Моделирование режима двухпозиционного регулирования температуры в термоэлектрических холодильниках с использованием тока паузы

А. ОВСИЦКИЙ, д-р техн.наук С. ФИЛИН Щецинский технический университет (Польша)

The paper contains the analysis of operation of a thermoelectric refrigerator at a bang-bang control of temperature in the cabinet with usage of so-called current of a pause – Ip. The obtained effect of a diminuation of a refrigerator power consumption depends on an exact selecting of an evocative current, which as contrasted to by condition of regulating ON - OFF makes 1,5 - 2times. The algorithm of calculation Ip, for a stationary and non-stationary mode of refrigerator operation, based on a method of thermal balances and load characteristics of the thermoelectric modules, is represented.

Термоэлектрические агрегаты широко используются для поддержания температуры от 0 до 12 °C в транспортных холодильниках объемом до 200 л. В последнее время наметилась тенденция постепенного вытеснения абсорбционных и компрессорных холодильных агрегатов термоэлектрическими и в других областях применения: офисная техника, холодильники для гостиниц, встроенные в мебель мини-бары [1, 3, 6]. Об этом же свидетельствует растущее на европейском рынке предложение термоэлектрических холодильников (ТЭХ) объемом свыше 30 л российских, шведских, немецких и испанских производителей.

В бытовых холодильниках и термостатирующих камерах температура обычно поддерживается с помощью манометрического датчика-реле температуры, в обиходе называемых «термостатами» (не путать с термостатическими камерами), например термостатами серии ТАМ производства Орловского АО «Орлэкс». Датчик осуществляет пуск – остановку холодильной машины при достижении температурой соответственно верхнего и нижнего пределов настройки датчика. В отличие от термостатирующих камер, где нужна высокая точность регулирования, в обычных холодильниках переход к использованию термоэлектрического агрегата не требует обязательной замены датчика-реле температуры на другой тип, что диктуется прежде всего экономическими соображениями. Стоимость современных термоэлектрических агрегатов ниже, чем компрессорных или абсорбционных одинаковой производительности, и имеет устойчивую тенденцию дальнейшего снижения. Поэтому относительное удешевление холодильника не может быть сведено на «нет» усложнением и соответственно удорожанием регулятора температуры. Иллюстрацией этому служит ряд термоэлектрических холодильников немецкой фирмы United AC, представленных на выставке IKK2002. В них использован сложный электронный регулятор температуры, в результате чего цена этих холодильников оказалась на 20 – 30 % выше, чем компрессорных аналогов того же изготовителя.

При циклической работе термоэлектрического агрегата с датчиком-реле температуры в период отключения его тока питания (время паузы) происходит интенсивное перетекание теплоты от радиатора горячей стороны агрегата к радиатору холодной стороны. Значительная доля этих утечек происходит непосредственно по ветвям термобатареи, которые представляют собой тепловые мосты. В результате температуры двух радиаторов быстро выравниваются. Установка чувствительного элемента термостата на радиаторе, т.е. косвенная регуляция, наиболее распространена на практике [это означает короткая пауза и соответственно высокий коэффициент рабочего времени ($k_{\rm pa} = \tau_{\rm pab} / \tau_{\rm unkna} >$ 0,85...0,9)]. При таких значениях $k_{_{DB}}$ традиционная двухпозиционная регуляция температуры типа ON-OFF малоэкономична, т.е. практически не дает выигрыша по сравнению с режимом постоянного включения агрегата.

Постановка задачи

Результаты экспериментального исследования режимов работы термоэлектрического холодильника ХТТ-60 представлены в работах [7, 8]. При использовании двухпозиционной регуляции температуры термоэлектрический агрегат в момент паузы переключается на уменьшенное значение тока I_n . Благодаря этому значение k_{ps} снижается до 0,25...0,3, а при определенных величинах I_n – даже до нуля, т.е. холодильник по достижении в камере заданной температуры переходит на непрерывную работу при меньшем токе паузы. При этом энергопотребление снижается примерно в 2 раза по сравнению с регуляцией типа ON-OFF. Данные результаты получены при использовании в конструкции холодильника упомянутого выше терморегулятора ТАМ112 и при минимальных изменениях в электрической схеме питания термоэлектрического агрегата.

Вместе с тем проведенные эксперименты пока не охватывают всего диапазона изменений условий работы холодильника, например температуру окружающей среды T_{okp} , настройку терморегулятора, степень загруженности холодильника. Дополнительные ограничения на выбор величины тока в момент паузы накладывает увязка работы вентилятора с процессом регулирования температуры для выравнивания температуры горячей стороны термоэлектрического агрегата в период работы и паузы [7]. В связи с этим вполне оправданной и логичной представляется попытка создания расчетно-теоретической модели данного способа регулирования температуры в ТЭХ.

Исходные данные расчетной модели иллюстрируются рис. 1. Согласно нормативным документам, касающимся ТЭХ малого объема и мини-баров, средняя температура в камере холодильника Т, не должна превышать 2...6 °С. Настройка терморегулятора должна обеспечивать колебания средней температуры в этом диапазоне в режиме цикличной работы I_{раб} / I_n. Наиболее экономичным режимом работы ТЭХ является постоянная работа ТЭХ при токе паузы І, за исключением случаев увеличения тепловой нагрузки (открытие двери, вложение в камеру теплых продуктов). В этом случае ТЭХ на некоторое время переходит на цикличный режим до восстановления теплового равновесия, после чего циклическая регуляция прекращается и холодильник снова работает в режиме І. Это означает, что величина І, должна обеспечить поддержание температуры в камере в непрерывном режиме работы в пределах указанного диапазона, т.е. $I_{\rm k-} > I_{\rm n} > I_{\rm k+}$ где $I_{\rm k-}$ и I_{ит} – величины тока питания, соответствующие верхней и нижней допустимой температуре. Это первое из трех ограничений, показанное на оси І треугольниками (см. рис.1). Второе граничное условие $I_n > I_{\text{вент}}$ означает, что ток паузы и связанное с ним относительное напряжение должны быть больше критической величины, при которой осевой вентилятор холодильного агрегата уже не обеспечивает вращения крыльчатки. Для вентиляторов типа B80 и его зарубежных аналогов напряжение гарантированного запуска составляет около 50 % номинального, или для нашего случая 6 ± 0,5 B, из

Рис. 1. Графическое представление взаимосвязи параметров T_v, T_v, и I и их изменение во времени: 1, 1' - соответственно теоретическая и экспериментальная зависимости тока питания во времени при двухпозиционном регулировании (I_n < I_{нр}); 2, 2' - соответственно теоретическая и экспериментальная зависимости тока питания во времени при непрерывной работе агрегата на токе паузы $(I_n^* > I_{x+}); 3$ - соответствующее кривым 1 изменение во времени (ось τ) средней температуры в камере при двухпозиционном регулировании: 4 — соответствующее кривым 2 изменение средней температуры в камере после переключения в момент т₁ тока с І_{раб} на І_п*; 5 - соответствующее кривым 1, 3 изменение температуры горячего радиатора; 6 - соответствующее кривым 2, 4 изменение температуры горячего радиатора (остальные обозначения расшифрованы в тексте)

чего следует, что $U_n/U_{va6} > 0,542$ и $I_n/I_{pa6} > 0,542$. Третье граничное условие $I_n > I_{H,p}$ (где $I_{H,p}$ – ток настройки регулятора) увязывает величину І, с температурой в камере через температуру холодного радиатора T_{xx} и лимитирует также настройку терморегулятора. Иными словами, температура холодного радиатора в режиме I_n не должна превышать температуру T_{t+} срабатывания терморегулятора на включение рабочего тока І лабо что гарантирует невозвращение агрегата к нежелательному цикличному режиму работы. Шкалы температур на осях T_{xp} и T_{k} сдвинуты относительно друг друга на величину $\Delta T_{xn}(I_n^*)$, представляющую собой разность средних во времени и по поверхности температур в камере и холодном радиаторе при токе паузы. Величина $\Delta T_{\rm c}$ зависит от тока питания, а для цикличного режима вообще является переменной, но для упрощения дальнейшего анализа принимаем ее постоянной и не зависящей от І. На основании экспериментальных данных, полученных на разных моделях ТЭХ [4], разность температур горячего радиатора и окружающей среды, т.е. $\Delta T_{\rm rr}$, также можно принять постоянной в сравнительно узком диапазоне изменения тока паузы. Данное допущение, как и второе граничное условие, справедливы для простой параллельной схемы питания вентилятора и термоэлектрического модуля (группы модулей), которая применяется в подавляющем большинстве конструкций ТЭХ.

Принятые допущения.

Холодильник работает от сети переменного тока U = 220 В и запитывается через преобразователь ~220 В/= 24 В, имеющий постоянный КПД преобразования, который в данной модели не учитывается.

В рассматриваемом диапазоне изменения параметров системы постоянными принимаются: напряжение сети; напряжения $U_{\rm pa6}$, $U_{\rm n}$ на выходе источника питания в режимах работы и паузы; величины $I_{\rm pa6}$, $I_{\rm n}$ (средние за время работы и паузы соответственно); температура окружающей среды $T_{\rm okp}$; зона нечувствительности термостата ΔT_t ; величины $\Delta T_{\rm xp}$ и $\Delta T_{\rm rp}$; коэффициент K теплопередачи шкафа ТЭХ.

Настройка терморегулятора соответствует условию: $(T_t^+ - T_t^-) \in \Delta T_{\kappa(\text{доп})}$, что отражено на рис.1.

Холодный радиатор работает в так называемом плачущем режиме, т.е. иней на нем не образуется.

Влаговыпадение не учитывали.

Математическая модель

Целью создаваемой модели является минимизация суточного энергопотребления ТЭХ путем установления зависимости суточного энергопотребления холодильника от величины тока паузы. В рамках модели следует рассмотреть отдельно стационарный (при работе на токе I_n^*) и нестационарный (на токе $I_{\text{раб}}$) режимы работы холодильника.

Суточное энергопотребление *E* холодильника (кВт·ч/сут)

$$E = E_{\text{pad}} + E_{\text{паузы}} = W_{\text{pad}} \tau_{\text{pad}} + W_{\text{п}} \left(24 - \tau_{\text{pad}}\right), \qquad (1)$$

где $\tau_{\text{раб}}$ – суммарное время работы холодильника при рабочем токе питания, ч.

Для режимов работы и паузы мощность, потребляемая холодильником от сети постоянного тока, определяется выражением

$$W = NW_{\rm M} + W_{\rm ReHT},\tag{2}$$

где $W_{\rm M}, W_{\rm Bert}$ – мощности, потребляемые модулем и вентилятором.

В свою очередь,

$$W_{\rm M} = UI = I^2 / R_{\rm (t)} = U^2 / R_{\rm (t)}; \tag{3}$$

$$W_{\rm BeHT} = UI = U^2 / R_{\rm w},\tag{4}$$

где $R_{(t)}$ – электрическое сопротивление модуля в соответствующих условиях работы;

 R_w – электрическое сопротивление вентилятора, которое также принимаем постоянным и не зависящим от напряжения питания.

Схема включения вентилятора в агрегате соответствует условию

$$U_{\rm BeHT} = N U_{\rm M}/2, \tag{5}$$

где N – количество модулей в агрегате.

Расчет стационарного режима работы. Как показывает предварительный анализ (см. рис.1), при правильной настройке термостата наибольшее ограничение на минимально возможное значение тока паузы накладывает условие поддержания температуры в камере в пределах установленного диапазона. Поэтому первой нашей задачей является определение значения $I_{\kappa+}$ для обеспечения непрерывной работы агрегата на этом токе.

В общем виде тепловой баланс холодильника в стационарном режиме записывается следующим образом:

$$\Sigma Q_i = Q_0, \tag{6}$$

где Q₀ – холодопроизводительность агрегата в данном режиме работы;

 ΣQ_i – сумма теплопритоков к камере холодильника.

Учитывая, что в стационарном режиме работы двери холодильника не открываются, новые продукты не загружаются, а внутренних источников теплоты в камере нет, упомянутая сумма сводится к мощности теплопритоков через изоляцию. Тогда

$$\Sigma Q_i = KF \left(T_{\text{okp}} - T_{\text{k}} \right), \tag{7}$$

где *F* – средняя поверхность теплообмена через стенки между камерой ТЭХ и окружающей средой;

*T*_{окр} – температура окружающей среды (помещения);

 $T_{\rm K}$ – текущая средняя температура* воздуха в камере холодильника.

Согласно [1,8] холодопроизводительность модуля можно выразить через его нагрузочную характеристику и паспортные данные в виде зависимости

$$Q_{0} = N \left\{ c_{\Delta} \Delta T_{\max} \left[1 - \left(1 - \frac{I}{I_{onr}} \right)^{2+c_{i}} \right] - c_{i} (T_{w} - T_{rp}) - c_{\Delta} (T_{rp} - T_{xp}) \right\}, (8)$$

где $I_{\text{опт}}$ — оптимальный ток питания (при котором достигается ΔT_{max});

 $c_{\Lambda} = Q_{0\text{max}} / \Delta T_{\text{max}};$

c_i, *c*_{*t*} – эмпирические коэффициенты;

 $\Delta T_{\rm max}$ — максимальная разность температур, создаваемая модулем при нулевой тепловой нагрузке ($Q_0 = 0$);

 T_w – определяющая температура (температура горячего радиатора, при которой определяются $\Delta T_{\rm max}$ и $Q_{\rm 0max}$);

*T*_{гр}, *T*_{хр} – средняя температура поверхности соответственно горячего и холодного радиаторов.

Формула (8) рекомендуется для использования в диапазоне токов питания $(0,3-0,9)I_{\text{опт}}$, который покрывает интересующий нас диапазон. Приравняв (6) и (7) и решая уравнение относительно текущего тока *I* с учетом того, что

$$\Delta T_{\rm M} = \Delta T_{\rm xon} + \Delta T_{\rm rp} + \Delta T_{\rm xp}, \tag{9}$$

где $\Delta T_{\rm M}$ – текущая разница температур (брутто) термоэлектрического модуля (между поверхностями радиаторов);

 ΔT_{xp} – разница температур в камере и холодного радиатора;

 $\Delta T_{\rm rp}$ – разница температур горячего радиатора и окружающей среды;

 $\Delta T_{\rm xon}$ – перепад температур, создаваемый холодильником,

после преобразований получаем искомую зависимость (10), где в правой части переменной величиной является только температура холодного радиатора, связанная с температурой камеры выражением (11):

$$I(T) = I_{orrr} \left\{ 1 - \left[\frac{Nc_{\Delta}\Delta T_{max} - KF(T_{oxp} - T_{xp} - \Delta T_{xp})}{Nc_{\Delta}\Delta T_{max}} - \frac{Nc_{t}(T_{w} - T_{rp}) - Nc_{\Delta}(T_{rp} - T_{xp})}{Nc_{\Delta}\Delta T_{max}} \right]^{\frac{1}{2+c_{t}}} \right\},$$
(10)

$$T_{\rm K} = T_{\rm xp} + \Delta T_{\rm xp}.$$
 (11)

Нестационарный режим работы.

Возникает в результате нарушения теплового равновесия в камере после открытия двери и вложения в нее теплых продуктов (имеющих температуру $T_{\rm okp}$). Спустя некоторое время после этого температура в камере повышается от $T_{\rm K}$ до $T_{\rm K2}$. Если $T_{\rm K2} > T_{\rm Hp}$, срабатывает термостат на включение и ток питания переключается с $I_{\rm n}$ на $I_{\rm pa6}$.

В нестационарном режиме холодопроизводительность Q_0 агрегата выше суммы теплопритоков ΣQ_i , а разница между этими двумя величинами идет на охлаждение продуктов и воздуха в камере. Таким образом, тепловой баланс этого режима запишется в виде

$$Q_0 - \Sigma Q_i = \frac{mc(T_{oxp} - T_\kappa)}{\tau}, \qquad (12)$$

где τ – время охлаждения продуктов от температуры T_{orb} до T_{r} .

Искомой величиной при расчете этого режима является время τ_{pab} из зависимости (1). Отсюда

$$\tau = \frac{mc(T_{okp} - T_{\kappa})}{Q_0 - kF\left(T_{okp} - \frac{T_{\kappa} + T_{\kappa 2}}{2}\right)}.$$
(13)

Здесь температура T_{κ} зависит от тока питания агрегата, а $Q_0 = (Q_{01} + Q_{02})/2$, причем

$$Q_{01} = N \left\{ c_{\Delta} \Delta T_{\max} \left[1 - \left(1 - \frac{I}{I_{orr}} \right)^{2+c_i} \right] - c_i (T_w - T_{rp}) - c_{\Delta} (T_{rp} - T_{xpl}) \right\}; (14)$$

$$Q_{02} = N \left\{ c_{\Delta} \Delta T_{\max} \left[1 - \left(1 - \frac{I}{I_{\text{orr}}} \right)^{T} \right] - c_r (T_w - T_{\text{rp}}) - c_{\Delta} (T_{\text{rp}} - T_{\text{sp2}}) \right\}$$
(15)

В свою очередь, $T_{xp2} = T_{\kappa} - \Delta T_x$, а $T_{xp1} = T_{\kappa 2} - \Delta T_x$. Далее следует определить $T_{\kappa 2}$.

Согласно [2] это же время при более точном расчете может быть найдено из выражения

$$\tau = \frac{mc}{n(\alpha I + k)} \ln \frac{Q_{01}}{Q_0},\tag{16}$$

где *n* – количество термоэлементов;

α – коэффициент термоЭДС;

*Q*₀₁ и *Q*₀ – холодопроизводительности агрегата в начальный и конечный момент времени.

В зависимостях (13) и (16) под *mc* следует понимать полную массовую теплоемкость новых продук-

^{*}Далее в тексте под температурой в камере имеется в виду средняя температура, если не оговорено иначе. Методика ее измерения и усреднения описана в [1].

тов $m_{\rm н.np} c_{\rm н.np}$ и воздуха в камере. Принимаем, что изза кратковременного открытия двери температура стенок камеры и внутренних, конструктивных элементов (например, полки) не успевает измениться, однако во время одного открытия двери происходит полная однократная замена воздуха в камере, что отражено в формуле

 $mc = m_{\rm H,np} c_{\rm H,np} + V \rho_{\rm B} c_{\rm B} N_{\rm g}, \qquad (17)$

где N_{μ} – число открытий двери за искомое время τ ; V – объем камеры;

ρ_в – плотность воздуха в камере.

Поскольку число открытий двери в сравнительно короткий отрезок времени обычно не превышает двух, а теплоемкость воздуха мала по сравнению с теплоемкостью продуктов, вторым членом в выражении (17) в дальнейших расчетах можно пренебречь. Отсюда же следует, что для определения $\tau_{\rm pa6}$ принципиальное значение имеет не само открытие двери, а факт вложения новых продуктов. Предположив, что загрузка холодильника новыми продуктами происходит один раз в день, определим степень их влияния на температуру $T_{\rm v2}$.

Переключение режима питания агрегата с I_n на I_{pa6} происходит не сразу, а спустя некоторое время после загрузки теплых продуктов. Это означает, что холодо-производительность агрегата в этот отрезок времени расходуется на погашение теплопритоков извне и по-зволяет нам записать тепловой баланс камеры в следующем виде:

$$MCT_{\kappa} + mcT_{o\kappa p} = (MC + mc)T_{\kappa 2}, \qquad (18)$$

откуда

$$T_{\kappa 2} = \frac{MCT_{\kappa} + mcT_{\sigma \kappa p}}{MC + mc},$$
(19)

где *MC* – полная массовая теплоемкость содержимого камеры холодильника, в том числе «старых» продуктов.

Величину *т* можно определить, исходя из норм дневного рациона питания человека, в котором охлажденные продукты составляют примерно 1,5 кг на человека. Если холодильником пользуются двое, то m = 3 кг. Определить *т* можно также, используя в расчете следующие величины:

коэффициент заполнения объема $k_{_{3an}}$ (обычно принимается в пределах 0,2 – 0,35 кг/дм³);

коэффициент оборота продуктов k_{ofop} , т.е. величина, обратная количеству дней, в течение которых полностью обновляется содержимое холодильника.

Принимая для холодильника малого объема величины $k_{_{\text{зап}}} = 0,25$ и $k_{_{\text{обор}}} = 0,2$, получаем:

$$m = V k_{\text{san}} k_{\text{ofop}} = 60.0, 25.0, 2 = 3 \text{ Kr.}$$
(20)

Рис.2. Расчетная зависимость тока паузы I_n от температуры холодного радиатора T_{xp} и температуры окружающей среды T_{nkp}

Тогда масса «старых» продуктов $M^* = V k_{3an} - m = 12 \text{ кг.}$ Масса M в выражении (19) складывается из половины массы изоляции холодильной камеры $M_{\mu 3}$, массы элементов агрегата (холодного радиатора) M_{xp} , находящихся в камере, массы оборудования камеры (полок) M_{0500} и массы продуктов M^* :

$$M = M_{_{\rm HJ}}/2 + M_{_{\rm XD}} + M_{_{\rm ofop}} + M^*.$$
(21)

Применительно к рассматриваемому холодильнику XTT-60 можно, например, записать, что

M=1,8+1,3+0,3+12=15,4 кг.

Вводя понятие относительной массы $\varphi = M/m$ ($\varphi \sim 5$) и еще одно упрощение, что теплоемкости *C* и *c* равны (это можно утверждать с погрешностью, не превышающей 5 – 6 %), получим

$$T_{\kappa_2} = \frac{\varphi T_{\kappa} + T_{\text{okp}}}{\varphi + 1} = \frac{\varphi T_{\kappa} + T_{\kappa} + \Delta T_{\text{xon}}}{\varphi + 1} = T_{\kappa} + \frac{1}{\varphi + 1} \Delta T_{\text{xon}},$$
(22)

или для нашего случая

 $T_{_{\kappa 2}} = T_{_{\kappa}} + \Delta T_{_{\rm XOJ}}/6.$

Примеры расчетов

При расчете режимов работы холодильника XTT-60 по вышеописанной методике и с учетом ранее проведенных испытаний [7, 8] были приняты следующие исходные данные:

 $\Delta T_{xp} = 4,2 \text{ °C}; \Delta T_{rp} = 5 \text{ °C}; k = 0,9 \text{ Br/(м²·K)}; F = 1,07 \text{ м}^2.$ Результаты расчетов представлены на рис.2. Для $T_{oxp} = 22 \text{ °C}$ нижнее граничное значение тока паузы, определенное по зависимости (10), составляет $I_n = 1,66 \text{ A}.$ Для этого значения выполняются все граничные условия, а температура поверхности холодного радиатора составляет $T_{xp} = 1,8 \text{ °C}$ ($T_{x} = 6 \text{ °C}$). Определенное расчетным путем значение хорошо согласуется с данными экспериментов [7, 8]. Для этого значения время охлаждения продуктов, рассчитанное по вышеприведенной методике, составляет $\tau = 1,96$ ч, а суточный расход электроэнергии E = 0,613 кВт·ч без учета энергетических потерь в блоке питания термоэлектрического агрегата, которые могут составлять от 7 – 8 до 25 % в зависимости от типа используемого преобразователя напряжения.

Таким образом, сделана попытка создания полуэмпирической расчетно-теоретической модели термоэлектрического холодильника с двухпозиционной регуляцией температуры в камере при использовании так называемого тока паузы. Созданную упрощенную модель можно рассматривать как первый этап создания более сложной и более адекватной модели работы холодильника.

Удовлетворительное совпадение полученных расчетных и экспериментальных данных свидетельствует о принципиальной возможности расчетного определения тока паузы после испытаний холодильника. Границы применимости данной методики подлежат уточнению в дальнейших исследованиях.

Список литературы

- Аракелов Г.А., Васильев Ю.В., Гордеев В.С. Термоэлектричество настоящее и будущее холодильной техники. – Холодильное дело, 1997. № 2.
- 2. *Наер В.А., Гарачук В.К.* Теоретические основы термоэлектрического охлаждения. Одесса, 1982.
- Филин С.О. Термоэлектрические холодильники для яхт и маломерных судов // Судоходство. 1999. № 4.
- Филин С.О., Журбенко С.О., Варюхина Л.Н. Транспортный термоэлектрический холодильник XTT-30 // Холодильная техника и технология, 1994. Вып. 56.
- Филин С.О., Задирака В.Ю. Расчет термоэлектрических холодильников по нагрузочным характеристикам источника холода // Инж.физ.журн. 1991. Т. 60. № 2.
- 6. Filin S. Termoelektryczne urządzenia chłodnicze. IPPU Masta, Gdańsk, 2002.
- Filin S., Zakrzewski B., Owsicki A. The operational characteristics of thermoelectric refrigeration using a "current of thermal lock" in on-off temperature regulation. Journal of Thermoelectricity, n. 4, 2000.
- Filin S., Zakrzewski B., Owsicki A. Effective methods of cold productivity regulation of thermoelectric refrigeration. – 2-nd International Workshop of Non-compression Cooling & Refrigeration. Odessa, 3-5.10.2001.
- 9. *Philin S.O., Danko V.A.* Rational methods and means for temperature control in domestic thermoelectric refrigerators and thermostats. Journal of Thermo-electricity, No.2, 1998.