УДК 536.1

Методика расчета режимов прогрева строительных конструкций в условиях внутреннего пожара

Канд. техн. наук **Н. Н. РОМАНОВ**¹, канд. пед. наук **А. А. КУЗЬМИН**¹, канд. пед. наук **А. А. ПЕРМЯКОВ**¹, *д-р техн. наук* **А. В. ФЕДОРОВ**², канд. техн. наук **М. А. СИМОНОВА**³

¹Санкт-Петербургский университет государственной противопожарной службы МЧС России ²Университет ИТМО

³Санкт-Петербургский политехнический университет Петра Великого

E-mail: afedorov@itmo.ru

Рассматриваются и обсуждаются результаты экспериментальных исследований по изучению особенности теплового режима пожара на объектах с различной пожарной нагрузкой. Для проведения экспериментов предложен численный расчет температурных полей и оценки огнестойкости несущих конструкций с функциональными возможностями разработанного программного комплекса. Данный программный комплекс позволяет автоматизировать и оптимизировать расчет температурного режима пожара в помещении и параметров температурного поля по толщине несущих и ограждающих конструкций при пожаре в помещениях с различной пожарной нагрузкой для оценки огнестойкости строительных конструкций. Результатом работы явилось создание специального модульного программного продукта, работающего в среде Microsoft Office Excel с применением Vissual Basic for Applications и обеспечивающий оперативное редактирование исходных данных.

Ключевые слова: температурное поле, пожарная нагрузка, температурный режим, программный комплекс.

Информация о статье:

Поступила в редакцию 26.01.2021, принята к печати 26.02.2021 DOI: 10.17586/1606-4313-2021-20-1-84-93 Язык статьи — русский

Для цитирования:

Романов Н. Н., Кузьмин А. А., А. А. Пермяков, Федоров А. В., Симонова М. А. Методика расчета режимов прогрева строительных конструкций в условиях внутреннего пожара// Вестник Международной академии холода. 2021. № 1. С. 84–93. DOI: 10.17586/1606-4313-2021-20-1-84-93

Methodology for calculating heating modes of building structures in an internal fire

Ph. D. N. N. ROMANOV¹, *Ph. D.* A. A. KUZMIN¹, *Ph. D.* A. A. PERMYAKOV¹, *D. Sc.* A. V. FEDOROV², *Ph. D.* M. A. SIMONOVA³

¹Saint-Petersburg University of State Fire Service of Emercom of Russia ²ITMO University ³Peter the Great Saint Petersburg Polytechnic University

E-mail: afedorov@itmo.ru

The article considers and discusses the results of experimental studies to study the features of the thermal regime of a fire at objects with different fire loads. For the experiments, a numerical calculation of temperature fields and an assessment of the fire resistance of load-bearing structures with the functionality of the developed software package are proposed. This software package allows you to automate and optimize the calculation of the temperature regime of a fire in a room and the parameters of the temperature field along the thickness of load-bearing and enclosing structures in case of fire in rooms with different fire loads to assess the fire resistance of building structures. The result of the work was the creation of a special modular software product operating in the Microsoft Office Excel environment with the use of Vissual Basic for Applications and providing online editing of the initial data.

Keywords: temperature field, fire load, temperature regime, software package.

Article info:

Received 26/01/2021, accepted 26/02/2021 DOI: 10.17586/1606-4313-2021-20-1-84-93 Article in Russian **For citation:**

Romanov N. N., Kuzmin A. A., Permyakov A. A., Fedorov A. V., Simonova M. A. Methodology for calculating heating modes of building structures in an internal fire. *Journal of International Academy of Refrigeration*. 2021. No 1. p. 84–93. DOI: 10.17586/1606-4313-2021-20-1-84-93

Введение

На практике, при решении вопросов пожарной безопасности, как правило, приходится заниматься проблемами огнестойкости строительных конструкций в условиях реальных пожаров. Процесс передачи тепла в конструкциях при температурном режиме пожара имеет ряд особенностей, вызванных разнообразием и зависимостью теплофизических свойств материалов конструкций от температуры, а также влиянием вида и параметров пожарной нагрузки.

Исходя из этого, выполнение поставленной задачи сводится к решению двух совместных теплофизических задач [2]:

 — расчет изменения температуры продуктов горения в помещении во времени в зависимости от пожарной нагрузки;

 — расчет изменения температуры прогрева в ограждающих конструкциях до наступления предельного состояния.

Постановка задачи

Моделирование пожароопасных ситуаций — это один из способов, позволяющий обосновывать оптимальные решения в области обеспечения пожарной безопасности.

Один из геометрических параметров строительных конструкций, как правило, больше двух остальных, в качестве примера — железобетонная плита перекрытия имеет толщину меньше по сравнению с длинной и шириной [16].

Таким образом, нахождение изменения температуры по одной координате, возможно при решении дифференциального уравнения теплопроводности [10]:

$$\frac{\partial t}{\partial \tau} = a(t) \cdot \frac{\partial^2 t}{\partial x^2} \tag{1}$$

В случае одностороннего равномерного прогрева плиты толщиной δ, в условиях внутреннего пожара, необходимо учитывать:

 — распределение температур по толщине плиты перед возникновением пожара:

$$t(x,0) = t_0;$$
 (2)

 изменения условий теплообмена на обогреваемой и необогреваемой поверхностях, соответственно:

$$\frac{\partial t}{\partial x}\Big|_{x=0} = -\frac{\alpha_1(\tau)}{\lambda} \cdot [t(0,\tau) - t_{f1}(\tau)]; \qquad (3)$$
$$\frac{\partial t}{\partial x}\Big|_{x=\delta} = -\frac{\alpha_2(\tau)}{\lambda} \cdot [t(\delta,\tau) - t_{f2}(\tau)].$$

85

Здесь $\alpha_1(\tau)$, $\alpha_2(\tau)$ — коэффициенты теплообмена между поверхностями плиты со стороны продуктов горения и воздуха [8], Вт/ (м^{2.} °С), соответственно; $t_{f1}(\tau)$ среднеинтегральная температура в помещении в условиях пожара; $t_{f2}(\tau)$ — температуры окружающей среды со стороны наружной поверхности стены; t_0 — температура по толщине стенки в начальный момент времени.

Коэффициент теплообмена $\alpha_1(\tau)$ между поверхностью плиты и продуктами горения, согласно [1], рассчитывается по формуле:

$$\alpha_1(\tau) = 11,63e^{0,0023 \cdot t_{f1}(\tau)}.$$
(4)

Коэффициент теплообмена между необогреваемой поверхностью и окружающим воздухом $\alpha_2(\tau)$, учитывает распространение тепла за счет конвекции α_k и распространение за счет излучения α_{π} :

$$\alpha_2(\tau) = \alpha_k + \alpha_{\pi}.$$
 (5)

При естественной конвекции в большом объеме конвективная составляющая α_k определяется по формулам [12]:

$$\alpha_{\kappa} = \frac{\mathrm{Nu}_{m}}{\ell} \cdot \lambda_{f2}(\tau);$$

$$\mathrm{Nu}_{m} = C(\mathrm{Gr}_{m} \cdot \mathrm{Pr}_{m})^{n} \cdot \left(\frac{\mathrm{Pr}_{f}}{\mathrm{Pr}_{w}}\right)^{0,25}.$$

Коэффициент теплообмена, учитывающий распространение тепла за счет излучения определяется по формуле [10]:

$$\alpha_{\pi} = \frac{C_0 \varepsilon_{\rm rnp} \left[\left(\frac{T_{f2}}{100} \right)^4 - \left(\frac{T(\delta, \tau)}{100} \right)^4 \right]}{t_{f2}(\tau) - t(\delta, \tau)}.$$
 (6)

В случае применения неявной разностной схемы, аппроксимация соответствующих производных уравнения (1) при его решении, необходимо выполнение определенного условия разбиения на временные и пространственные слои ($\Delta \tau$ и Δx) [8]:

$$\Delta \tau \leq \frac{0,5}{\frac{a}{\Delta x^2} + \frac{\alpha_{\max}}{c\rho\Delta x}}.$$

В этом случае, решения выглядят следующим образом: — температура по толщине ограждения $t(x_i, \tau_j)$, т. е. температура в точке с координатами $x_i=i\Delta x$ и $\tau_j=j\Delta \tau$) рассчитыватся по формуле:

$$t_{i,j} = \operatorname{Fu}_{i}\left[t_{i-1,j} + t_{i+1j} + t_{i,j}\left(\frac{1}{\operatorname{Fu}_{i}} - 2\right)\right];$$
(7)

температура на обогреваемой поверхности:

$$t_{0,j} = \frac{t_{1,j-1} + \operatorname{Bu}_{i} \cdot t_{j1} + t_{0,j-1} \cdot \frac{1}{2 \cdot \operatorname{Fu}_{i}}}{1 + \operatorname{Bu}_{i} + \frac{1}{2 \cdot \operatorname{Fu}_{i}}};$$
(8)

 температура на необогреваемой поверхности определяется уравнением:

$$t_{n,j} = t_{n-1,j} - \frac{\Delta x}{\lambda(\bar{t})} \alpha_2 \left(\frac{t_{n-1,j} - t_{f2}}{2} \right).$$
(9)

Здесь Fu_i =
$$\frac{a(t)\Delta \tau}{\Delta x^2}$$
; Bu_i = $\frac{\alpha_1 L}{\lambda(\bar{t})}$; $a(\bar{t})$ — коэффициент

температуропроводности, м²/с; $\lambda(\bar{t})$ — коэффициент теплопроводности материала конструкции, Вт/ (м · °С).

В реальных условиях изменение температур происходит в широком диапазоне значений, поэтому при расчетах все теплофизические свойства материалов ограждающих конструкций вычисляются по средней температуре:

$$\overline{t} = \frac{t_{i,j} + t_{i+1,j}}{2}$$

Данная расчетная схема легла в основу разработанного программного продукта по расчету прогрева ограждающих конструкций в условиях пожара. Обоснованность применения предлагаемой расчетной схемы по определению изменения искомой температуры в условиях реального внутреннего пожара доказана путем сравнения результатов численных экспериментов, применяющих эту методику, и результатов огневых испытаний. В качестве образцов для сравнения рассматривались материалы, существенно отличающиеся друг от друга по своим теплофизическим свойствам — бетоны на различных заполнителях и конструкционного керамзитобетона. Характер изменения температуры греющей среды во время проведения экспериментов, согласно [1], определялся зависимостью:

$$t_f = 345 \cdot \lg (8\tau + 1) + t_0.$$

Результаты сопоставления представлены на рис. 1–4 и в табл. 1, 2.

Сравнительный анализ результатов расчета и экспериментальных данных показал, что расхождение значений не превышает 15–20%, несмотря на существенные различия таких теплофизических свойств материалов, как плотность, теплоемкость и теплопроводность, что подтверждает возможность использования данной расчетной схемы для расчета изменения температуры по толщине ограждающих конструкций.

Так как изменение температуры в условиях реального внутреннего пожара на объекте нефтеперерабатывающей промышленности может существенно отличаться

Puc. 1. Изменение температуры прогрева в конструкционном керамзитобетоне Fig. 1. Changes of the heating temperature in structural keramzit concrete

Рис. 2. График сопоставления результатов расчетов с данными испытаний керамзитобетона Fig. 2. Comparison of calculation results with keramzit concrete test data

Рис. 3. Изменение температуры прогрева в тяжелом бетоне на известковом заполнителе Рис. 3. Changes of the heating temperature in heavy lime concrete

Puc. 4. График сопоставления результатов расчета с данными испытаний тяжелого бетона на известковом заполнителе Fig. 4. Comparison of calculation results with heavy lime concrete test data

Таблица 1

Сопоставление результатов численных экспериментов прогрева конструкционного керамзитобетона с данными огневых испытаний

Table 1

Comparison of numerical experiments' results with fire test data

	30 n	ИИН.	60 м	ИИН.	90 n	иин.	120	МИН.	150	мин.	180	мин.
Глубина прогрева, мм	Расчет	Эксп.										
0	730	700	876	840	950	910	1004	940	1044	990	1075	1040
40	111	140	225	210	316	350	390	430	453	500	506	550
80	29	40	61	70	102	100	145	140	186	190	226	250
120	21	30	26	32	39	40	56	70	76	90	98	110
160	20	20	21	22	25	23	31	30	38	45	46	55

Таблица 2

Сопоставление результатов численных экспериментов прогрева тяжелого бетона на известковом заполнителе с данными огневых испытаний

Table 2

Comparison	of numerical	experiments'	results	with f	ire test	data
Comparison	of munici icai	caper mients	results	WICH I	11 0 1051	unun

	30 n	иин.	60 m	60 мин.		90 мин.		120 мин.		150 мин.		180 мин.	
тлубина прогрева, мм	Расчет	Эксп.	Расчет	Эксп.	Расчет	Эксп.	Расчет	Эксп.	Расчет	Эксп.	Расчет	Эксп.	
0	613	600	790	790	883	870	946	930	993	970	1030	1000	
40	146	130	282	280	383	370	431	440	525	500	579	560	
80	45	50	108	95	174	150	234	280	288	280	336	310	
120	24	32	47	45	83	80	122	100	160	150	196	180	
160	20	20	32	25	53	40	76	60	10	80	122	100	

Puc. 5. Температурный режим в помещении при стандартном режиме пожара и при пожаре в резервуаре хранения нефтепродуктов (V=10 м³) Fig. 5. Temperature mode in a room in standard fire mode and in oil product storage vessel fire (V=10 m³)

Puc. 6. Визуальное отображение Fig. 6. Display image

Рис. 7. Элемент справочно-вычислительного модуля («Блок значений показателей пожарной опасности»)

Fig. 7. An example of software package (Fire danger classes)

Рис. 8. Элемент справочно-вычислительного модуля («Теплофизические свойства веществ»)

от «стандартного» температурного режима (рис. 5), то в предлагаемом программном продукте необходимо использовать методику расчета среднеинтегральной температуры продуктов горения в помещении, приведенную в нормативном документе [1]. Данная методика учитывает параметры помещения и вентиляции, физико-химические свойства горючего материала и пожарную нагрузку.

Для определения температурного режима по данной методике необходимо иметь следующие параметры:

плотность пожарной нагрузки;

— характеристики горючих материалов (скорость распространения пламени, низшая теплота сгорания, удельная массовая скорость выгорания, удельное потребление кислорода) в помещениях различных классов функциональной пожарной опасности, принятые по аналогии с экспериментальными и нормативными данными.

Такие данные приведены в отечественных и зарубежных нормативных, справочных и методических документах, а также в различной технической литературе [4–7, 9, 11–15].

Для автоматизации поиска требуемых характеристик и повышения эффективности выполняемых пожарно-тех-

Таблица 3

Геометрические размеры складского помещения

Table 3

Warehouses dimensions

Длина помещения, м	16
Ширина помещения, м	12
Высота помещения <i>h</i> , м	3,5
Толщина перекрытий, см	18
Материал перекрытий	Бетон М350
Площадь 2-х окон, м ²	6
Высота двери для персонала, см	190
Ширина двери для персонала, см	90
Высота дверного проема	300
для производственных целей, см	500
Ширина дверного проема	220
для производственных целей, см	220

нических расчетов, был разработан справочно-вычислительный модуль, представляющий собой базу данных теплофизических свойств веществ и значений показателей пожарной опасности по типовой горючей нагрузке. На рис. 6, 7, 8 представлена визуализация отображений, порождаемых программой для ЭВМ:

С помощью предложенного программного комплекса можно спрогнозировать распределение температуры

Таблица 4 Результаты вычислений температурного поля в сечении перекрытия при пожаре бензина в резервуаре объемом V=10 м³ (7400 кг)

Table 4

Calculation results for the temperature field of gasolinr fire in floor slab cross-section

in a tank of the volume of V=10 m³ (7400 kg)

-od w						Врем	я, ми	н.				
Глубина п грева, м	10	20	30	40	50	60	70	80	90	100	110	120
0	32	286	730	689	503	371	292	241	205	179	160	145
20	22	100	315	437	432	371	311	264	229	202	180	164
40	20	45	149	256	307	307	283	255	228	206	188	172
60	20	27	74	145	201	228	231	223	210	196	183	171
80	20	22	41	83	127	159	177	182	180	175	169	161
100	20	21	28	50	80	108	129	142	148	150	150	147
120	20	20	23	33	52	74	93	108	119	126	130	131
140	20	20	21	26	37	52	68	83	95	105	111	115
160	20	20	20	23	29	40	53	66	79	89	96	101
180	20	20	20	22	26	35	46	58	69	78	85	90

Таблица б

Результаты вычислений температурного поля в сечении перекрытия при пожаре дизельного топлива в резервуаре объемом V=10 м³ (8500 кг)

Table 6

Calculation results for the temperature field of diesel fuel fire in floor slab cross-section in a tank of the volume of $V=10 \text{ m}^3$ (8500 kg)

ь-од М						Врем	я, мин	ł.				
Глубина п грева, м	10	20	30	40	50	60	70	80	90	100	110	120
0	21	42	151	424	713	839	815	716	603	504	426	366
20	20	27	70	191	351	478	548	565	541	494	441	392
40	20	22	39	95	189	284	358	404	423	418	399	372
60	20	21	27	53	105	169	230	278	311	328	331	325
80	20	20	22	34	61	102	147	188	222	247	262	269
100	20	20	21	25	39	64	94	127	156	182	201	215
120	20	20	20	22	29	43	63	86	110	133	153	170
140	20	20	20	21	24	31	44	61	80	100	118	135
160	20	20	20	20	22	26	34	47	62	78	95	110
180	20	20	20	20	21	24	31	40	53	67	82	95

в сечении плиты перекрытия, при возможном воздействии в реальных условиях пожара в складском помещении нефтебазы. Геометрические размеры, а также характеристики его ограждающих конструкций и пожарной нагрузки представлены в табл. 3.

Результаты расчетов по оценки огнестойкости перекрытия рассматриваемого помещения представлены в табл. 4–7.

Таблица 5

89

Результаты вычислений температурного поля в сечении перекрытия при пожаре мазута в резервуаре объемом V=10 м³ (9700 кг)

Table 5

Calculation results for the temperature field of mazut fire in floor slab cross-section

in a tank of the volume of V=10 m³ (9700 kg)

1 MM						Врем	я, ми	н.				
Глубина прогрева,	10	20	30	40	50	60	70	80	90	100	110	120
0	21	33	100	291	582	807	888	857	767	662	564	483
20	20	24	51	135	279	425	530	590	606	586	544	493
40	20	21	32	70	147	243	329	396	439	458	457	440
60	20	20	24	41	82	141	205	262	307	340	358	364
80	20	20	21	29	49	84	128	172	212	245	271	287
100	20	20	20	23	33	53	81	113	145	175	201	222
120	20	20	20	21	26	36	54	76	101	125	149	170
140	20	20	20	20	23	28	39	54	72	92	112	132
160	20	20	20	20	21	24	31	41	55	72	89	106
180	20	20	20	20	21	23	28	36	48	61	76	91

Таблица 7

Результаты вычислений температурного поля в сечении перекрытия при пожаре керосина в резервуаре объемом V=10 м³ (8200 кг)

Table 7

Calculation results for the temperature field of kerosene fire in floor slab cross-section in a tank of the volume of $V=10 \text{ m}^3$ (8200 kg)

-0d 7						Врем	ия, ми	н.				
Глубина пј грева, ми	10	20	30	40	50	60	70	80	90	100	110	120
0	23	88	392	741	805	690	548	437	358	302	261	229
20	21	41	158	345	472	515	490	435	377	328	289	257
40	20	27	73	176	278	345	373	367	344	315	287	262
60	20	22	40	93	162	222	263	283	285	277	263	248
80	20	21	27	53	95	141	180	207	223	228	227	222
100	20	20	22	34	58	89	121	148	168	181	188	191
120	20	20	21	26	39	58	82	105	125	141	152	160
140	20	20	20	22	29	41	57	76	94	110	124	134
160	20	20	20	21	24	32	44	58	74	89	102	113
180	20	20	20	21	23	29	38	50	64	77	89	99

Puc. 9. Выбор режима пожара Fig. 9. Fire mode selection

Температурный прогрев ограждающих конструкций в режиме реального пожара

Температурный прогрев ограждающих конструкций в режиме реального пожара

	Тип констр	укции	Пота	олочное	перекр	ытие				
троительны	й материал	Бетон на изв	естняко	вом запо.	пнителе]		Тол	щина, мм	100,0
Врем	Т-ра	Коэффициент теплообмена	Paccmos	ние от	нагревс	аемой по	оверхно	ости, м	Коэффициент теплообмена	
мин	среды, ⁰ С	гр.среды, Вт/(м ^{2.} К)	0	20	40	60	80	100	окр.среды, Вт/(м ² ·К)	
0	25		25	25	25	25	25	25		
30	347	18	93	43	30	26	25	25	15	
60	881	62	597	285	141	75	46	37	16	
90	605	33	504	392	266	173	116	87	16	
120	249	14	326	323	276	218	167	128	17	
150	89	10	239	253	241	213	177	141	17	
180	40	9	190	207	206	191	166	134	17	

Puc. 11. Результаты расчета Fig. 11. Calculation results

Puc. 12. Графическое представление результатов расчета Fig. 12. Graphic representation of calculation results

На рис. 9–12 представлена визуализация отображений, порождаемых программой для ЭВМ:

Выводы

Результатом проведенного исследования явились автоматизация и оптимизация расчета изменения температуры продуктов горения в помещении и параметров температурного поля в сечении перекрытия объекта нефтегазового комплекса при пожаре в помещениях с раз-

Литература

- ГОСТ Р 12.3.047–98. Пожарная безопасность технологических процессов. Общие требования. Методы контроля. М.: Госстандарт России, 1998. 84 с.
- Федеральный закон № 123-ФЗ «Технический регламент о требованиях пожарной безопасности» от 22.07.2008 г.
- Абросимов Ю. Г. Кошмаров Ю. А., Юн С. П. Моделирование температурного режима пожара в помещении // Пожарная опасность технологических процессов, зданий, сооружений и профилактика пожаров. Сборник научных трудов. М.: Изд-во ВИПТШ МВД СССР. 1988. с. 130–135.
- Дринберг А. С., Гравит М. В., Зыбина О. А. Огнезащита конструкций интумесцентными лакокрасочными материалами при углеводородном режиме пожара // Лакокрасочные материалы и их применение. 2018. № 1–2. С. 44–49.
- Гравит М. В., Недрышкин О. В., Вайтицкий А. А., Шпакова А. М., Нигматуллина Д. Г. Пожарно-технические характеристики строительных материалов в европейских и российских нормативных документах. Проблемы гармонизации методов исследования и классификации // Пожаровзрывобезопасность. 2016. Т. 25. № 10. С. 16–29.
- Страхов В. Л., Крутов А. М., Давыдкин Н. Ф. Огнезащита строительных конструкций / под ред. Ю. А. Кошмарова. М.: Информационно-издательский центр «ТИМР», 2000. 433 с.
- Пожнин А. П., Шиняева Т. Б. Огнезащитные покрытия для металлических конструкций на основе минерального сырья // Труды ЛИСИ (Строительные материалы и изделия из техногенного сырья). Л.: ЛИСИ, 1991. 25 с.

личной пожарной нагрузкой (горючими жидкостями), для оценки влияния различных температурных режимов на огнестойкость строительных конструкций.

Практическое использование данного программного модуля упрощает и ускоряет возможности практического использования в профессиональной сфере для прогнозирования поведения несущих конструкций в условиях реального пожара, выбора материала и типа конструкций.

References

- State standard R 12.3.047–98. Fire safety of technological processes. General requirements. Methods of control. Moscow: Gosstandart of Russia, 1998. 84 p. (in Russian)
- 2. Federal Law No. 123-FZ «Technical Regulations on Fire Safety Requirements» of 22.07.2008. (in Russian)
- Abrosimov Yu. G. Koshmarov Yu. A., Yun S. P. Modeling of the temperature regime of a fire in a room. Fire hazard of technological processes, buildings, structures and fire prevention. Collection of scientific works. Moscow: Publishing House of the VIPTSH of the Ministry of Internal Affairs of the USSR. 1988. pp. 130–135. (in Russian)
- Drinberg A. S., Gravit M. V., Zybina O. A. Fire protection of structures with intumescent paint and varnish materials in the hydrocarbon fire regime. *Paint and varnish materials and their application*. 2018. No. 1–2. pp. 44–49. (in Russian)
- Gravit M. V., Nedryshkin O. V., Vaititsky A. A., Shpakova A. M., Nigmatullina D. G. Fire-technical characteristics of building materials in European and Russian regulatory documents. Problems of harmonization of research methods and classification. *Fire and explosion safety*. 2016. Vol. 25. No. 10. P. 16–29. (in Russian)
- Strakhov V. L., Krutov A. M., Davydkin N. F. Fire protection of building structures. Moscow: Information and Publishing Center «TIMR», 2000, 433 p. (in Russian)
- Pozhnin A. P., Shinyaeva T. B. Fire-resistant coatings for metal structures based on mineral raw materials. Trudy LISI (Construction materials and products from technogenic raw materials). L.: LISI, 1991. 25 p. (in Russian)

- 8. Зайцев А. М., Бологов В. А. Численное моделирование прогрева строительных конструкций для определения коэффициента теплоотдачи при пожарах // Вестник воронежского института ГПСМЧС России. 2015. № 1. с. 19–26.
- 9. *Еналеев Р. Ш.* Огнестойкость элементов конструкций при пожарах на предприятиях нефтегазового комплекса / Р. Ш. Еналеев, Э. Ш. Теляков, О. А. Тучкова, Л. Э. Осипова // Известия ВУЗов. Проблемы энергетики. 2010. № 11–12. С. 23–34.
- Пашковский П. С. Математическая модель тепломассообменных процессов при пожаре в здании / П. С. Пашковский, И. Н. Зинченко, А. М. Богомаз // Научный вестник НИИГД «Респиратор». 2015. № 52. С. 51–59.
- Заикин С. В., Страхов В. Л., Карпов В. Л. Огневые испытания огнезащиты для технологического оборудования объектов добычи, переработки, транспортировки и хранения нефти и газа // Материалы МНПК: Актуальные проблемы пожарной безопасности. М.: ВНИИПО МЧС России, 2008. Ч. 1. С. 210–214.
- Abdrakhimov V., Abdrakhimova E., Semenychev V. Study of heat and mass transfer during firing of heat insulation objects based on burntrocks and beidellite clay. Refractories and Industrial Ceramics, 1 July 2011. Vol. 52, No. 2. Pp. 133–135, doi:10.1007/ s11148-011-9381-2
- Andrej Horvat, Yehuda Sinai & Piotr Tofilo (2009) Semi-Analytical Treatment of Wall Heat Transfer Coupled to a Numerical Simulation Model of Fire // Numerical Heat Transfer, Part A: Applications, 55:6,517–533, DOI: 10.1080/10407780902821128
- 14. John H. Lienhard IV, John H. Lienhard V. Aheat transfer text book. 3rd ed. Cambridge, MA: Phlogiston Press, 2008.
- Novozhilov V. Non-Linear Dynamical Model of Compartment Fire Flashover // Journal of Engineering Mathematics. 2010. Vol. 67, No 4. P. 387–400.
- Roitman V. M. Fire testing of Bilding Materials in View of the Moisture Factor. First European Symposium of Fire Safety Science (Abstracts). Zurich. ETH. 1995. P. 135–136.

Сведения об авторах

Романов Николай Николаевич

К. т. н., доцент Санкт-Петербургского университета государственной противопожарной службы МЧС России, 191245, Санкт-Петербург, Московский пр. 149, nik57nik@mail.ru, ORCID ID 0000-0001-8254-9424

Кузьмин Анатолий Алексеевич

К. п. н., доцент Санкт-Петербургского университета государственной противопожарной службы МЧС России, 191245, Санкт-Петербург, Московский пр. 149, kaa47@mail.ru, ORCID ID 0000-0003-0301-0696

Пермяков Алексей Александрович

К. п. н., Санкт-Петербургский университет государственной противопожарной службы, 191245 Санкт-Петербург, Московский пр. 149, jouker2005@yandex.ru, ORCID ID 0000-0002-2081-6934

- Zaitsev A. M., Bologov V. A. Numerical simulation of heating of building structures for determining the heat transfer coefficient in fires. *Bulletin of the Voronezh Institute HPSCS Russia*. 2015. No. 1, p. 19–26.
- Enaleev R. Sh. Fire resistance of structural elements during fires at oil and gas complex enterprises / R. Sh. Enaleev, E. Sh. Telyakov, O. A. Tuchkova, L. E. Osipova. *Izvestiya VUZov. Ener*gy problems. 2010. No 11–12. Pp. 23–34. (in Russian)
- Pashkovsky P. S., Zinchenko I. N., Bogomaz A. M., Mathematical model of heat and mass transfer processes in a building fire. *Scientific Bulletin of the NIIGD «Respirator»*. 2015. No. 52. pp. 51–59. (in Russian)
- Zaikin S. V., Strakhov V. L., Karpov V. L. Fire tests of fire protection for technological equipment of oil and gas production, processing, transportation and storage facilities. *MNPC materials: Actual problems of fire safety*. Moscow: VNIIPO EMER-COM of Russia, 2008. Ch. 1. pp. 210–214. (in Russian)
- Abdrakhimov V., AbdrakhimovaE., Semenychev V. Study of heat and mass transfer during firing of heat insulation objects based on burntrocks and beidellite clay. *Refractories and Industrial Ceramics*, Vol. 52, No. 2. (1 July 2011), Pp. 133–135, doi:10.1007/s11148-011-9381-2
- Andrej Horvat, Yehuda Sinai & Piotr Tofilo (2009) Semi-Analytical Treatment of Wall Heat Transfer Coupled to a Numerical Simulation Model of Fire, *Numerical Heat Transfer*, Part A: Applications, 55:6,517–533, DOI: 10.1080/10407780902821128
- 14. John H. Lienhard IV, John H. Lienhard V. Aheat transfer text book. -3rd ed. Cambridge, MA: Phlogiston Press, 2008.
- Novozhilov V. Non-Linear Dynamical Model of Compartment Fire Flashover. *Journal of Engineering Mathematics*. 2010. Vol. 67, No 4. P. 387–400.
- Roitman V. M. Fire testing of Bilding Materialsin View of the Moisture Factor. First European Symposium of Fire Safety Science (Abstracts). Zurich. ETH. 1995. P. 135–136.

Information about authors

Romanov Nikolay N.

Ph. D., Associate Professor of the St. Petersburg University of State Fire Service of Emercom of Russia, Russia, 191245, St. Petersburg, Moskovsky Pr. 149, nik57nik@mail.ru, ORCID ID 0000-0001-8254-9424

Kuzmin Anatoly A.

Ph. D., Associate Professor of the St. Petersburg University of State Fire Service of Emercom of Russia, Russia, 191245, St. Petersburg, Moskovsky Pr. 149, kaa47@mail.ru, ORCID ID 0000-0003-0301-0696

Permyakov Alexey A.

Ph. D., St. Petersburg University of State Fire Service of Emercom of Russia, Russia, 191245, St. Petersburg, Moskovsky Pr. 149, jouker2005@yandex.ru, ORCID ID 0000-0002-2081-6934

Федоров Александр Валентинович

Д. т. н., доцент факультета биотехнологий Университета ИТМО, 191002, Санкт-Петербург, ул. Ломоносова, 9, afedorov@itmo.ru, ORCID ID 0000-0003-0030-3848

Симонова Марина Александровна

К. т. н., доцент, доцент Высшей школы техносферной безопасности Инженерно-строительного института, Санкт-Петербургский политехнический университет Петра Великого, 195251, Санкт-Петербург, Политехническая ул., 29, masima82@inbox.ru, ORCID ID 0000-0003-2716-0349

Fedorov Alexander V.

D. Sc., Associate Professor of the Faculty of Biotechnology of ITMO University, Russia, 191002, St. Petersburg, Lomonosova St. 9, afedorov@itmo.ru, ORCID ID 0000-0003-0030-3848

Simonova Marina A.

Ph. D., Associate Professor, Associate Professor of the Higher school of technosphere safety of the Institute of civil Engineering, Peter the Great Saint Petersburg Polytechnic University, Russia, 195251, St. Petersburg, Politechnicheskaya St. 29, masima82@inbox.ru, ORCID ID 0000-0003-2716-0349

Университет ИТМО, совместно с Томским политехническим университетом и Международной академией холода, приглашает принять участие в III Международной научной конференции «Энерго-ресурсоэффективность в интересах устойчивого развития».

Конференция состоится в Санкт-Петербурге на базе Университета ИТМО 19-24 апреля 2021 г.

Научная программа конференции:

- Энергосбережение и повышение энергетической эффективности
- Экоэнергетика
- Проблемы экологической безопасности и системы защиты среды обитания
- ▶ Чистые технологии
- ≻ Чистая вода
- ▶ Рациональное природопользование
- Устойчивые холодильные цепи
- Пищевые биотехнологии для здоровья человека

Участниками конференции являются представители из 13 стран мира (Чешская Республика, Хорватия, Словения, Новая Зеландия, Малайзия, Иран и т.д.), а также из регионов РФ. По результатам конференции будут опубликованы тезисы докладов в сборнике РИНЦ, выпущен сборник Scopus, опубликованы статьи в журналах ВАК и Q1.

Сайт конференции:

https://www.sewanconf.ru