УДК 536.1

Расчет температурных полей несущих металлических конструкций в условиях высокотемпературного воздействия для оценки огнестойкости

Канд. техн. наук **М. А. СИМОНОВА¹**, канд. техн. наук **Н. Н. РОМАНОВ²**, канд. пед. наук **А. А. ПЕРМЯКОВ²**, д-р техн. наук **А. В. ФЕДОРОВ³**,

канд. техн. наук В. А. КОРАБЛЕВ³, канд. техн. наук Д. П. ВОЛКОВ³

¹Санкт-Петербургский политехнический университет Петра Великого

²Санкт-Петербургский университет государственной противопожарной службы МЧС России

³Университет ИТМО

E-mail: afedorov@itmo.ru

Рассматриваются и обсуждаются результаты расчета прогрева несущих металлических конструкций в условиях высокотемпературного воздействия. Достоверность получаемых результатов теплотехнических расчетов определяет точность и надежность оценки огнестойкости строительных конструкций. Для проведения оценки огнестойкости несущих конструкций предложен численный расчет температурных полей металлических элементов конструкций с функциональными возможностями разработанного программного комплекса. Данный программный комплекс позволяет автоматизировать расчет фактического предела огнестойкости как незащищенных, так и с огнезащитой металлических элементов строительных конструкций во времени с учетом переменных высокотемпературных воздействий.

Ключевые слова: критическая температура, предел огнестойкости, приведенная толщина, несущая способность, программный комплекс.

Информация о статье:

Поступила в редакцию 14.04.2021, принята к печати 20.05.2021 DOI: 10.17586/1606-4313-2021-20-2-88-97 Язык статьи — русский

Для цитирования:

Симонова М. А., Романов Н. Н., Пермяков А. А., Федоров А. В., Кораблев В. А., Волков Д. П. Расчет температурных полей несущих металлических конструкций в условиях высокотемпературного воздействия для оценки огнестой-кости // Вестник Международной академии холода. 2021. № 2. С. 88–97. DOI: 10.17586/1606-4313-2021-20-2-88-97

Method of engineering calculation of the fire resistance limit for load-bearing metal structures

Ph. D. M. A. SIMONOVA¹, Ph. D. N. N. ROMANOV², Ph. D. A. A. PERMYAKOV², D. Sc. A. V. FEDOROV³, Ph. D. V. A. KORABLEV³, Ph. D. D. P. VOLKOV³

¹Peter the Great Saint Petersburg Polytechnic University

²Saint-Petersburg University of State Fire Service of Emercom of Russia

³ITMO University

E-mail: afedorov@itmo.ru

The results of the calculation for heating of load-bearing metal structures under conditions of high-temperature exposure are considered and discussed. The reliability of the obtained results of heat engineering calculations determines the accuracy and reliability of the assessment fo fire resistance of building structures. To assess the fire resistance of load-bearing structures, a numerical calculation of the temperature fields for metal structural elements with the functionality of the developed software package is proposed. The software package allows you to automate the calculation of the actual fire resistance limit for both unprotected and fire-protected metal elements of building structures in time, taking into account variable high-temperature influences.

Keywords: critical temperature, fire resistance limit, reduced thickness, load-bearing capacity, software package.

Article info:

Received 14/04/2021, accepted 20/05/2021 DOI: 10.17586/1606-4313-2021-20-2-88-97 Article in Russian **For citation:**

Simonova M. A., Romanov N. N., Permyakov A. A., Fedorov A. V., Korablev V. A., Volkov D. P. Method of engineering calculation of the fire resistance limit for load-bearing metal structures. *Journal of International Academy of Refrigeration*. 2021. No 2. p. 88–97. DOI: 10.17586/1606-4313-2021-20-2-88-97

Введение

Высокотемпературное воздействие греющей среды на строительную конструкцию может привести к наступлению одного или нескольких предельных состояний: потери несущей способности, целостности или потери теплоизолирующей способности. Время до наступления одного из предельных состояний для данной конструкции называется пределом огнестойкости и является важнейшей характеристикой строительной конструкции с точки зрения пожарной безопасности.

Требования пожарной безопасности считаются выполненными в том случае, если фактический предел огнестойкости конструкции выше, чем требуемый:

$$\tau_{\phi} \ge \tau_{\rm Tp} \tag{1}$$

где τ_{ϕ} — фактический предел огнестойкости конструкции; $\tau_{\tau p}$ — требуемый предел огнестойкости конструкции.

Требуемый предел огнестойкости устанавливается нормативными правовыми актами и нормативными документами по пожарной безопасности, а фактический предел огнестойкости определяется либо путем натурных испытаний или путем расчета.

В практике современного строительства металлические элементы конструкций имеют широкое распространение. При этом металлические конструкции очень чувствительны к нагреву — под воздействием высокой температуры со стороны нагретых газов при пожаре металл быстро теряет прочность и упругость, стремительно развиваются пластические и температурные деформации. Фактический предел огнестойкости незащищенных металлических конструкций составляет, как правило, не более 15 минут (R15) и зависит от марки металла, вида и размеров конструкции, схемы опирания и рабочей нагрузки.

В качестве защиты металлических конструкций, и следовательно, увеличения предела огнестойкости используются такие способы как:

 — конструктивная защита в виде: облицовки плитными, листовыми и другими огнеупорными материалами; нанесения штукатурки; применения различных толстослойных напыляемых составов и т. д.;

— нанесение тонкослойных огнезащитных покрытий, которые под воздействием высоких температур вспучиваются и создают на поверхности теплоизолирующий слой, позволяющий увеличить огнестойкость до значений R45-R60. Однако, расчет предела огнестойкости конструкций, защищенных тонкослойным вспучивающимся покрытием, осложняется необходимостью определения в нестационарном режиме коэффициента теплопроводности вспученного слоя.

Разработка инженерных методов расчета огнестойкости основных несущих элементов имеет большое значение на стадии проектировании строительных конструкций различного назначения. Однако процесс расчета не только трудоемкий, но и имеет ряд особенностей, учет которых обязателен и вызывает определенные сложности. Во-первых, сложность расчетов обусловлена разнообразием металлических профилей современных строительных конструкций; во-вторых, в условиях воздействия высоких температур изменяются теплофизические свойства непосредственно самих несущих металлических элементов конструкций, а также огнезащитных материалов. Таким образом, создание инженерных методов расчетов на основании простых расчетных формул и несложных вычислений дают результаты с не достаточной для практики точностью. Поэтому одним из способов решения данной проблемы может являться применение методов моделирования в строительной теплофизике [1, 2, 3] и использование вычислительной техники.

Постановка задачи

Расчетный метод определения предела огнестойкости строительной конструкции на основе исходных данных используется, как правило, в ситуациях, когда проведение огневых испытаний не представляется возможным.

Расчет включает в себя две части: статическую (прочностную) и теплотехническую задачи.

При решении статической задачи определяют критическую для данной конструкции температуру $t_{\rm kp}$, при которой конструкция теряет способность сопротивляться нагрузке.

При теплотехническом расчете определяется время прогрева конструкции до заданной критической температуры.

Puc. 1. Схема расчета предела огнестойкости Fig. 1. Fire-resistance limit calculation

Puc. 2. Расчет коэффициентов γ_{tem} и γ_{e^*} в зависимости от условий применения конструкции Fig. 2. Calculation of coefficients γ_{tem} and γ_{e^*} depending on the conditions of structure usage

Решение прочностной задачи (нахождение критической температуры) осуществляется в зависимости от профиля металлического элемента, его геометрических размеров, формы, площади поперечного сечения, схемы и периметра обогрева сечения элемента, метода крепления, условий работы, величины нормативной нагрузки и марки стали [4].

В формулах, представленных в блок-схеме, параметры означают: γ_{tem} — коэффициент учитывающий изменение нормативного сопротивления R_n стали; γ_e — коэффициент учитывающий изменение модуля упругости E стали; M_n — максимальный изгибающий момент от действия нормативной нагрузки, кг·см; N_n — нормативная нагрузка, кг; W — момент сопротивления сечения, см³; e — эксцентриситет приложения нормативной нагрузки, cm; J_{min} — наименьший момент инерции сечения элемента, см⁴; S — площадь поперечного сечения элемента, см²; l — длина элемента, см; l_0 — расчетная длина элемента, см.

Расчетная длина элемента *l*₀ рассчитывается по формуле [4]:

$$l_0 = C \cdot l \tag{2}$$

Здесь коэффициент *C* в зависимости от способа крепления принимается равным: при жестком опирании (защемление по концам) — C=0,5; при жестком опирании одной опоры и шарнирное опирание другой — C=0,7; в случае когда, один конец защемлен, другой свободен (консольное) — C=2; при шарнирном опирании сжатого элемента (по концам) — C=1.

При известных значениях γ_{tem} и γ_e критическая температура определяется с помощью линейной интерполяции из табл. 1.

В основе теплотехнического расчета лежат уравнения нестационарной теплопроводности твердого тела [5].

Если строительная конструкция представляет собой незащищенную металлическую конструкцию или конструкцию с тонкослойным огнезащитным покрытием, то уравнение для расчета прогрева имеет вид

$$c(t)\rho\delta_{\Pi p}\frac{\partial t}{\partial \tau} = \frac{t_f(\tau) - t(\tau)}{R}.$$
 (3)

Здесь *R* — термическое сопротивление между греющей средой и непосредственно металлической конструкцией, которое определяется по формулам:

 в случае незащищенной металлической конструкции:

$$R = \frac{1}{\alpha(\tau)}; \tag{4}$$

 в случае конструкции с тонкослойными огнезащитными покрытиями:

Таблица 1

Значения коэффициентов ү_{tem} и ү_e, учитывающих изменения нормативного сопротивления и модуля упругости стали в зависимости от температуры

Table 1

The values of coefficient's γ_{tem} and γ_{e} , which take into account the changes of steel characteristic resistance μ and steel elasticity modulus depending on the temperature

t _{кр} , °С	γ_{tem}	γ_e
20	1,0	1,0
100	0,99	0,96
150	0,93	0,95
200	0,85	0,94
250	0,81	0,92
300	0,77	0,90
350	0,74	0,88
400	0,70	0,86
450	0,65	0,84
500	0,58	0,80
550	0,45	0,77
600	0,34	0,72
650	0,22	0,68
700	0,11	0,59

$$R = \frac{1}{\alpha(\tau)} + \frac{\delta_z}{\lambda_z(\bar{t})}.$$
 (5)

Здесь а (т), Вт/ (м²·°С) — коэффициент теплообмена между конструкцией и продуктами горения; $t_f(\tau)$, °С среднеинтегральная температура греющей среды; t(т), °С — температура металлической конструкции в момент времени; т — теплоемкость материала металлической конструкции, Дж/ (кг·°С); ρ — плотность материала конструкции, Кг/м³; δ_{np} — приведенная толщина металлической конструкции, м; δ_z — толщина огнезащитного покрытия, м; $\lambda_z(\bar{t})$ — коэффициент теплопроводности огнезащитного покрытия, Вт/ (м·°С); \bar{t} , °С — средняя температура между температурой на внешней поверхности огнезащитного покрытия t_z (т) и температурой ме-

таллической конструкции
$$\bar{t} = \frac{t_z(\tau) + t(\tau)}{2}$$

В качестве приведенной толщины металлической конструкции δ_{пр} выбирается величина, определяемая по формуле:

$$\delta_{\rm np} = \frac{S}{U}.$$
 (6)

Здесь *S* — площадь поперечного сечения конструкции, м²; *U* — обогреваемыйпериметр сечения металлической конструкции, м.

При определении периметра обогрева U рассматриваются только поверхности конструкции, которые непосредственно контактируют с греющей средой.

Формулы для расчета S и U некоторых наиболее распространенных сечений конструкций с учетом обогрева приведены в табл. 2.

Коэффициент теплообмена α(τ) между поверхностью конструкции и продуктами горения, согласно [6], рассчитывается по формуле:

$$\alpha(\tau) = 11,63 \cdot e^{0.0023t_f(\tau)}.$$
(7)

Здесь

 t_m — средняя температура между продуктами горения и поверхностью конструкции в момент времени τ ,

$$t_m = \frac{t_f(\tau) + t(\tau)}{2}$$
, °C; $T_m = 273 + t_m$, K; $T_f(\tau) = 273 + t_f(\tau)$, K;

 $T(\tau)=273+t(\tau), K; \epsilon_1$ — степень черноты греющей среды ($\epsilon_1=0,85$); ϵ_2 — степень черноты обогреваемой поверхности конструкции.

Если же в качестве огнезащиты металлических конструкций применяется один из видов конструктивной защиты (облицовка, толстослойное огнезащитное покрытие), то решение задачи по оценке огнестойкости означает найти распределения температуры металлического элемента во времени, с учетом изменения температуры по толщине огнезащиты.

Для этого, данная задача решается методом конечных разностей, применение которого возможно для тел любой конфигурации, неоднородных с изменяющимися температурой греющей среды и теплофизических свойств материалов конструкций. При этом, огнезащитное покрытие толщиной Δx , а сечение металлического элемента представляется как единое целое толщиной δ_{np} .

Использование неявной разностной схемы позволяет осуществить решение поставленной задачи с помощью решения системы линейных алгебраических уравнений.

$$t_{z}(1,\tau) = = \frac{\left\lfloor \alpha(\tau) + \frac{\lambda_{z}}{2\Delta x} \right\rfloor t_{f}(\tau) + \frac{\lambda_{z}}{\Delta x} t(2,\tau)}{\alpha(\tau) + \frac{3\lambda_{z}}{2\Delta x}};$$

$$t_{z}(2,\tau) = t_{z}(2,\tau-1) + a_{z} \frac{\Delta \tau}{\Delta x^{2}} [t_{z}(1,\tau) + t_{z}(3,\tau)]; (8)$$

$$t_{z}(n,\tau) = t_{z}(n,\tau-1) + a_{z} \frac{\Delta \tau}{\Delta x^{2}} [t_{z}(n-1,\tau) + t(\tau)];$$

$$t(\tau) = \frac{\frac{\lambda_{z}}{2\Delta x} t_{z}(n,\tau) + c \cdot \rho \cdot S \cdot t(\tau-1)}{\frac{\lambda_{z}}{2\Delta x} + c \cdot \rho \cdot S}.$$

Здесь $t_z(1, \tau), t_z(2, \tau), ..., t_z(n, \tau)$ — распределение температур по толщине огнезащитного покрытия в момент времени τ , а $t_z(1, \tau - 1), t_z(2, \tau - 1), ..., t_z(n, \tau - 1)$ — распределение температур в предыдущий момент времени, $t(\tau)$ — изменение температуры во времени металлического элемента.

Ввиду того, что в условиях пожара изменение температур происходит в широком диапазоне значений, то при расчетах все теплофизические свойства материалов конструкций вычисляются по соответствующим средним температурам пространственных слоев для каждого временного интервала.

Таблица 2

Формулы для расчета приведенной толщины металла

Table 2

Formulae for calculating mass factor

Профиль	Схема сечения элемента	Формула расчета сечения элемента	Формула расчета обогреваемой части периметра сечения
	l		$U \!=\! 2 \!\cdot\! (h \!+\! 2 \!\cdot\! b \!-\! t)$
		$S = t \cdot (h - 2 \cdot t) + 2 \cdot t \cdot b$	$U=2\cdot h+3\cdot b-2\cdot t$
			$U=h+2\cdot b-t$
b	I		$U=2 \cdot (0,5 \cdot h+b)$
			U = h + b - t
			$U = 2 \cdot (h + 2 \cdot b - t)$
			$U=h+3\cdot b-2\cdot t$
h l t		$S=t \cdot (h+2 \cdot b-2 \cdot t)$	$U = h + 4 \cdot b - 2 \cdot t$
b	Γ		$U=h+3\cdot b-t$
			$U = h + 2 \cdot b$
			$U = 2 \cdot b_1 + 2 \cdot b_2$
b ₁	L	$S = b_1 \cdot t + (b_2 - t) \cdot t$	$U=b_1+b_2$
l←→>l b₂	L		$U=2\cdot b_1+b_2$

Исходя из этого, необходимо выполнение определенного условия разбиения на временные интервалы $\Delta \tau$ и пространственные слои Δx , для повышения точности расчета.

Значения $\Delta \tau$ и Δx должны определяться в данной задаче из условия устойчивости:

$$\Delta \tau \leq \frac{0,5}{\frac{\lambda_z}{\rho_z \cdot c_z \cdot \Delta x^2} + \frac{\alpha_{\max}}{\rho_z \cdot c_z \cdot \Delta x}}.$$
(9)

В этом неравенстве α_{max} максимально возможное значение коэффициента теплообмена.

Для проверки адекватности данной расчетной схемы теплотехнического расчета, было проведено сопоставление результатов численного моделирования с данными работы [7], полученные при температурном режиме, соответствующему режиму стандартных огневых испытаний на огнестойкость, т. е.:

$$t_f = 345 \cdot \lg(8\tau + 1) + t_0. \tag{10}$$

Здесь τ — время, мин; t_0 — температура окружающей среды до возникновения пожара, °С. Результаты сопоставления представлены на рис. 3-6 и в табл. 3-10.

Анализ результатов сопоставления показал, что расхождение значений не превышает 15–20%, что подтверждает возможность использования данной расчетной схемы для расчета предела огнестойкости как несущих незащищенных, так и защищенных металлических конструкций с известными переменными от температуры теплоемкости и коэффициента теплопроводности материалов огнезащиты.

Для автоматизации расчетов по определению огнестойкости несущих металлических конструкций был разработан программный комплекс, включающий в себя стандартную методику решения прочностной задачи и предложенную методику теплотехнического расчета. Кроме того, в нем предусмотрена возможность ввода исходной информации для расчета не только «в ручном режиме», но и использование сортамента металлических элементов [8]–[14], представляющий собой совокупность геометрических характеристик, соответствующих государственным стандартам и форм профиля.

Рис. 4. Сопоставление результатов численного моделирования с данными работы [7] прогрева элементов стальной плиты с огнезащитой из сухой штукатурки толщиной 16 мм от приведенной толщины металла и времени

Fig. 4. Comparison of numerical modelling results with the data from [7] for the heating of steel plate elements with fire protection of 16 mm gypsum board depending on mass factor and time Таблица 3

Изменение температуры прогрева элементов стальной конструкции от приведенной толщины металла и времени, согласно [7]

Table 3

The changes of heating temperature for steel structure elements depending on mass factor and time according to [7]

\$ 100		Время, мин										
о _{пр} , мм	5	10	15	20	25	30	35	40	45			
5	212	495	626	709	743			_				
10	150	342	519	647	718	778	—	—	—			
15	116	276	431	552	656	722	773	817				
20	98	217	352	473	571	660	724	774	813			
30	72	181	287	394	473	544	615	690	729			
40	65	148	234	318	398	433	524	584	626			
60	51	107	172	242	302	354	407	468	520			

Таблица 5

Изменение температуры прогрева стальной плиты с огнезащитой из сухой штукатурки толщиной 16 мм от приведенной толщины металла и времени, согласно [7]

Table 5

The changes of heating temperature for a steel plate with protection of 16 mm gypsum board depending on mass factor and time according to [7]

\$	Время, мин								
о _{пр} , мм	0	30	60	90	120	150			
5	20	510	752	886	959	1030			
10	20	374	618	780	867	984			
15	20	284	509	697	808	901			
20	20	225	418	608	712	834			
30	20	170	332	496	610	746			
40	20	114	244	390	516	614			
60	20	102	196	301	408	492			

Таблица 7

Изменение температуры прогрева стальной плиты с огнезащитой из сухой штукатурки толщиной 32 мм от приведенной толщины металла и времени, согласно [7]

Table 7

The changes of heating temperature for a steel plate with protection of 32 mm gypsum board depending on mass factor and time according to [7]

\$	Время, мин								
о _{пр} , мм	0	30	60	90	120	150			
5	20	342	555	751	871	986			
10	20	152	352	555	709	847			
15	20	124	300	446	606	732			
20	20	110	228	386	508	621			
30	20	76	170	289	391	529			
40	20	59	135	231	332	415			
60	20	46	121	198	274	381			

Таблица 4

Результаты численного моделирования прогрева элементов стальной конструкции

Table 4

Numerical modelling results for the heating of steel structure elements

δ_{np} , мм		Время, мин											
	5	10	15	20	25	30	35	40	45				
5	182	480	644	726	770			_					
10	150	342	519	647	718	778		_	—				
15	122	290	453	580	689	758	806	834					
20	105	232	377	506	611	706	775	828	870				
30	76	190	301	414	497	571	646	725	765				
40	65	148	234	318	398	433	524	584	626				
60	55	116	186	261	326	382	440	505	562				

Таблица б

Результаты численного моделирования прогрева элементов стальной плиты с огнезащитой из сухой штукатурки толщиной 16 мм

Table 6

Numerical modelling results for the heating of a steel plate with fire protection of 16 mm gypsum board

δ _{пр} , мм	Время, мин								
	0	30	60	90	120	150			
5	20	469	692	815	882	948			
10	20	374	618	780	867	984			
15	20	267	478	655	760	847			
20	20	241	447	651	762	892			
30	20	163	319	476	586	716			
40	20	114	244	390	516	614			
60	20	106	204	313	424	512			

Таблица 8

Результаты численного моделирования прогрева элементов стальной плиты с огнезащитой из сухой штукатурки толщиной 32 мм

Table 8

Numerical modelling results for the heating of a steel plate with fire protection of 32 mm gypsum board

δ _{пр} , мм	Время, мин								
	0	30	60	90	120	150			
5	20	318	516	698	810	917			
10	20	152	352	555	709	847			
15	20	118	285	424	626	754			
20	20	118	244	413	544	664			
30	20	82	184	312	422	571			
40	20	59	135	231	332	415			
60	20	53	139	228	315	438			

Таблица 9

Изменение температуры прогрева стальной плиты с облицовкой из красного кирпича толщиной 65 мм от приведенной толщины металла и времени, согласно [7]

Table 9

The changes of heating temperature for a steel plate with protection of 65 mm width red brick depending on mass factor and time according to [7]

\$ 100	Время, мин.								
о _{пр} , мм	0	30	60	90	120	150			
5	20	66	163	364	492	632			
10	20	57	129	276	398	521			
15	20	51	106	215	321	444			
20	20	45	81	180	287	380			
30	20	40	58	123	204	322			
40	20	35	49	106	160	243			
60	20	32	44	90	138	201			

Таблица 10

Результаты численного моделирования прогрева элементов стальной плиты с огнезащитой из красного кирпича толщиной 65 мм

Table 10

Numerical modelling results for the heating of a steel plate with fire protection of 65 mm width red brick

\$ 101	Время, мин								
о _{пр} , мм	0	30	60	90	120	150			
5	20	61	152	339	458	588			
10	20	57	129	276	398	521			
15	20	48	101	204	305	422			
20	20	48	87	193	307	407			
30	20	43	63	133	220	348			
40	20	35	49	106	160	243			
60	20	37	51	104	159	231			

Рис. 5. Сопоставление результатов численного моделирования с данными работы [7] прогрева элементов стальной плиты с огнезащитой из сухой штукатурки толщиной 32 мм от приведенной толщины металла и времени

Fig. 5. Comparison of numerical modelling results with the data from [7] for the heating of steel plate elements with fire protection of 32 mm gypsum board depending on mass factor and time

Puc. 6. Сопоставление результатов численного моделирования с данными работы [7] прогрева элементов стальной плиты с огнезацитой из красного кирпича толщиной 65 мм от приведенной толщины металла и времени
 Fig. 6. Comparison of numerical modelling results with the data from [7] for the heating of steel plate elements with fire protection of 65 mm width red brick depending on mass factor and time

	Выбор проф	филя, условий опирания и работы металли	ческого элемента	
Профиль	Схема сечения элемента	Условие опирания элемента	Условие работы элемента	Хар-ки элемента
		Щарнирное опирание сжатого элемента (по концам)	Центральное сжатие	
	I			
				\bigcirc
Π				
0	0			

Puc. 7. Выбор профиля, условий опирания и работы металлической конструкции Fig. 7. Selection of profile, supporting and operation conditions of metal structure

ВВОД ДАННЫХ И РЕЗУЛЬТАТЫ РАСЧЕТОВ

Puc. 8. Ввод исходных данных и результаты расчетов Fig. 8. Initial data input and calculation results

Время прогрева, мин

На рис. 7, 8 представлена визуализация отображений, порождаемых программой для ЭВМ:

Выводы

Результатом проведенного исследования явились автоматизация и оптимизация расчета фактического пре-

дела огнестойкости несущих металлических конструкций, что при практическом использовании данного программного модуля упрощает и ускоряет возможность использования в профессиональной сфере для прогнозирования поведения несущих конструкций в условиях реального пожара, выбора материала и типа конструкций.

Литература

- 1. *Roitman V. M.* Fire testing of Bilding Materials in View of the Moisture Factor. First European Symposium of Fire Safety Science (Abstracts). Zurich. ETH. 1995. P. 135–136.
- Abdrakhimov V., Abdrakhimova E., Semenychev V. Study of heat and mass transfer during firing of heat insulation objects based on burntrocks and beidellite clay. Refractories and Industrial Ceramics, 1 July 2011. Vol. 52, No. 2. Pp. 133–135, doi:10.1007/ s11148-011-9381-2
- Романов Н. Н., Кузьмин А. А., А. А. Пермяков, Федоров А. В., Симонова М. А. Методика расчета режимов прогрева строительных конструкций в условиях внутреннего пожара // Вестник Международной академии холода. 2021. № 1. С. 84–93. DOI: 10.17586/1606-4313-2021-20-1-84-93
- Руководство по проектированию и устройству конструктивной огнезащиты строительных конструкций. М.: Издво ВНИИПО МЧС России. 2017. 112 с.
- Федоров А. В., Романов Н. Н., Кузьмин А. А., Минкин Д. А. Метод оценки эффективности огнезащиты стальных конструкций на объектах нефтегазового комплекса в условиях открытого пожара // Вестник Санкт-Петербургского университета ГПС МЧС России. 2017. № 2.
- Зайцев А. М., Бологов В. А. Численное моделирование прогрева строительных конструкций для определения коэффициента теплоотдачи при пожарах. // Вестник Воронежского института ГПСМЧС России. 2015. № 1. с. 19–26.
- Ройтман В. М. Инженерные решения по оценке огнестойкости проектируемых и реконструируемых зданий. Ассоциация «Пожарная безопасность и наука», 2001. 382 с.
- ГОСТ Р 53295–2009. Средства огнезащиты для стальных конструкций. Общие требования. Метод определения огнезащитной эффективности. URL: http://docs.cntd.ru/ document/1200071913
- ГОСТ 8239–89. Двутавры стальные горячекатаные. Сортамент. URL: http://docs.cntd.ru/document/1200004409
- 10. Мосалков И. Л., Плюснина Г. Ф., Фролов А. Ю. Огнестойкость строительных конструкций. М.: Спецтехника, 2001.
- Справочник по огнестойкости и пожарной опасности строительных конструкций, пожарной опасности строительных материалов и огнестойкости инженерного оборудования зданий (в помощь инспектору государственной противопожарной службы). М.: ВНИИПО, 1999.
- 12. Гравит М. В., Недрышкин О. В., Вайтицкий А. А., Шпакова А. М., Нигматуллина Д. Г. Пожарно-технические характеристики строительных материалов в европейских и российских нормативных документах. Проблемы гармонизации методов исследования и классификации. // Пожаровзрывобезопасность. 2016. Т. 25. № 10. С. 16–29.
- Пожнин А. П., Шиняева Т. Б. Огнезащитные покрытия для металлических конструкций на основе минерального сырья // Труды ЛИСИ (Строительные материалы и изделия из техногенного сырья). Л.: ЛИСИ, 1991. 25 с.
- 14. Еналеев Р. Ш. Огнестойкость элементов конструкций при пожарах на предприятиях нефтегазового комплекса / Р. Ш. Еналеев, Э. Ш. Теляков, О. А. Тучкова, Л. Э. Осипова // Известия ВУЗов. Проблемы энергетики. 2010. № 11–12. С. 23–34.

References

- Roitman V. M. Fire testing of Bilding Materials in View of the Moisture Factor. First European Symposium of Fire Safety Science (Abstracts). Zurich. ETH. 1995. P. 135–136.
- Abdrakhimov V., Abdrakhimova E., Semenychev V. Study of heat and mass transfer during firing of heat insulation objects based on burntrocks and beidellite clay. *Refractories and Industrial Ceramics*, 1 July 2011. Vol. 52, No. 2. Pp. 133–135, doi:10.1007/s11148-011-9381-2
- Romanov N. N., Kuzmin A. A., Permyakov A. A., Fedorov A. V., Simonova M. A. Methodology for calculating heating modes of building structures in an internal fire. *Journal of International Academy of Refrigeration*. 2021. No 1. p. 84–93. DOI: 10.1758 6/1606-4313-2021-20-1-84-93 (in Russian)
- Guidelines for the design and installation of structural fire protection of building structures. Moscow: VNIIPO EMERCOM of Russia Publishing House. 2017. 112 p. (in Russian)
- Fedorov A. V., Romanov N. N., Kuzmin A. A., Minkin D. A. Method for evaluating the effectiveness of fire protection of steel structures at oil and gas complex facilities in open fire conditions. *Vestnik Sankt-Peterburgskogo universiteta SBS EMERCOM of Russia*, 2017. no. 2. (in Russian)
- Zaitsev A. M., Bologov V. A. Numerical simulation of heating of building structures for determining the heat transfer coefficient in fires. *Bulletin of the Voronezh Institute of SPSMCHS of Russia.* 2015. No. 1. pp. 19–26. (in Russian)
- Roitman V. M. Engineering solutions for assessing the fire resistance of designed and reconstructed buildings. Association «Fire Safety and Science», 2001. 382 p. (in Russian)
- State standard R 53295–2009. Fire protection equipment for steel structures. General requirements. Method for determining the flame retardant efficiency. URL: http://docs.cntd.ru/document/1200071913 (in Russian)
- 9. State standard 8239–89. Hot-rolled steel I-beams. Assortment. URL: http://docs.entd.ru/document/1200004409 (in Russian)
- Mosalkov I. L., Plyusnina G. F., Frolov A. Yu. Fire resistance of building structures. Moscow: Spetstekhnika, 2001. (in Russian)
- Handbook on fire resistance and fire hazard of building structures, fire hazard of building materials and fire resistance of engineering equipment of buildings (to help the inspector of the state fire service). Moscow: VNIIPO, 1999. (in Russian)
- 12. Gravit M. V., Nedryshkin O. V., Vaititsky A. A., Shpakova A. M., Nigmatullina D. G. Fire-technical characteristics of building materials in European and Russian regulatory documents. Problems of harmonization of research methods and classification. *Fire and explosion safety*. 2016. Vol. 25. no. 10. pp. 16–29. (in Russian)
- Pozhnin A. P., Shinyaeva T. B. Fire-resistant coatings for metal structures based on mineral raw materials. *Trudy LISI (Construction materials and products from technogenic raw materials)*. L.: LISI, 1991. 25 p. (in Russian)
- Enaleev R. Sh. Fire resistance of structural elements during fires at oil and gas complex enterprises / R. Sh. Enaleev, E. Sh. Telyakov, O. A. Tuchkova, L. E. Osipova. *Izvestiya VUZov. Ener*gy problems. 2010. No. 11–12. pp. 23–34. (in Russian)

Сведения об авторах

Симонова Марина Александровна

К. т. н., доцент, доцент Высшей школы техносферной безопасности Инженерно-строительного института, Санкт-Петербургский политехнический университет Петра Великого, 195251, Санкт-Петербург, Политехническая улица, 29, masima82@inbox.ru, ORCID ID 0000-0003-2716-0349

Романов Николай Николаевич

К. т. н., доцент Санкт-Петербургского университета государственной противопожарной службы МЧС России, 191245, Санкт-Петербург, Московский пр. 149, nik57nik@mail.ru, ORCID ID 0000-0001-8254-9424

Пермяков Алексей Александрович

К. п. н., Санкт-Петербургский университет государственной противопожарной службы, 191245 Санкт-Петербург, Московский пр. 149, jouker2005@yandex.ru, ORCID ID 0000-0002-2081-6934

Федоров Александр Валентинович

Д. т. н., доцент факультета биотехнологий Университета ИТМО, 191002, Санкт-Петербург, ул. Ломоносова, 9, afedorov@itmo.ru, ORCID ID 0000-0003-0030-3848

Кораблев Владимир Антонович

К. т. н., старший научный сотрудник, тьютор факультета энергетики и экотехнологий Университета ИТМО, 191002, Санкт-Петербург, ул. Ломоносова, 9, vakorablev@itmo.ru

Волков Дмитрий Павлович

К. т. н., доцент, тьютор факультета энергетики и экотехнологий Университета ИТМО, 191002, Санкт-Петербург, ул. Ломоносова, 9, dpvolkov@itmo.ru

Information about authors

Simonova Marina A.

Ph. D., Associate Professor, Associate Professor of the Higher school of technosphere safety of the Institute of civil Engineering, Peter the Great Saint Petersburg Polytechnic University, Russia, 195251, St. Petersburg, Politechnicheskaya St. 29, masima82@inbox.ru, ORCID ID 0000-0003-2716-0349

Romanov Nikolay N.

Ph. D., Associate Professor of the Saint-Petersburg University of State Fire Service of Emercom of Russia, Russia, 191245, St. Petersburg, Moskovsky Pr. 149, nik57nik@mail.ru, ORCID ID 0000-0001-8254-9424

Permyakov Alexey A.

Ph. D., Saint-Petersburg University of State Fire Service of Emercom of Russia, Russia, 191245, St. Petersburg, Moskovsky Pr. 149, jouker2005@yandex.ru, ORCID ID 0000-0002-2081-6934

Fedorov Alexander V.

D. Sc., Associate Professor of the Faculty of Biotechnology of ITMO University, Russia, 191002, St. Petersburg, Lomonosova St. 9, afedorov@itmo.ru, ORCID ID 0000-0003-0030-3848

Korablev Vladimir A.

Ph. D., Senior researcher, Tutor of Faculty of Energy and Ecotechnology of ITMO University, 191002, Russia, St. Petersburg, Lomonosov str., 9, vakorablev@itmo.ru

Volkov Dmitry P.

Ph. D., Associate Professor, Tutor of Faculty of Energy and Ecotechnology of ITMO University, 191002, Russia, St. Petersburg, Lomonosov str., 9, dpvolkov@itmo.ru

7th IIR Conference on Sustainability and the Cold Chain

The IIR conference series on Sustainability and the Cold Chain is recognised as a cutting-edge event on the cold chain which addresses the ever-increasing demand for knowledge-sharing in this essential sector.

This prestigious biennial conference attracts international audiences of researchers and industrialists, providing an opportunity to showcase the latest developments in sustainability, retail refrigeration and the cold chain.

Start date: April 01, 2022 End date: April 30, 2022 Location: Newcastle, United Kingdom

- Main commissions: Refrigerating equipment; Cryobiology, cryomedicine; Food science & engineering
- Themes: Cold chain, interfaces
- Keywords: Cold chain; Sustainability

Organisers: IOR (Institute of Refrigeration, UK) Contact: iccc2020@sciencesconf.org Official websites: https://iiffir.org/en/events/7th_iir_conference_on_sus

https://iifiir.org/en/events/7th-iir-conference-on-sustainability-and-the-cold-chain