4. Carey P. Van. Liquid vapor phase change phenomena: An introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment // 2nd ed. Taylor & francis group, LLC. 2008.
5. Thome R. J. Engineering data book III // Wolverine tube, Inc. 2004–2010.
6. Suo M., Griffith P. Two-phase flow in capillary tubes // ASME J. Basic eng. 1964. Vol. 86.
7. Yang C.-Y., Shieh C.-C. Flow pattern of air–water and two-phase R134a in small circular tubes // International Journal of Multiphase flow. 2001. Vol. 27.
8. Revelline R. Experimental two-phase fluid flow in microchannels // Ph. D. thesis N 3437. Ecole polytechnique federale de lausanne. 2005.
9. Characterization of diabatic two-phase flows in microchannels: Flow pattern results for R134a in a 0,5 мм channel / R. Revellin, V. Dupont, T. Ursenbacher, R. J. Thome, I. Zun // International journal of multiphase flow. 2006. Vol. 32.
10. Jassim E. W., Newell T. A. Prediction of two-phase pressure drop and void fraction in microchannels using probabilistic flow regime mapping // International journal of heat and mass transfer. 2006. Vol. 49.
11. Garimella S., Killion J. D., Coleman J. W. Еxperimentally validated model for two-phase pressure drop in the intermittent flow regime for circular microchannels // Journal of fluids engineering, transactions of the ASME. 2002. Vol. 124 (1).
12. Chung P. M.-Y., Kawaji M. The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels // International journal of multiphase flow. 2004. Vol. 30.
13. Thome J. R., Dupont V., Jacobi A. M. Heat transfer model for evaporation in microchannels. Part I: Presentation of the model // International journal of heat and mass transfer. 2004. Vol. 47.
14. Cioncolini A., Thome R. J., Lombardi C. Unified macro-to-microscale method to predict two-phase frictional pressure drops of annular flows // International journal of multiphase flow. 2009. Vol. 35.
15. Lockhart R. W., Martinelli R. C. Proposed correlation of data for isothermal two-phase, two-component flow in pipes // Chem. eng. prog. 1949. Vol. 45.
16. Revellin R., Thome J. R. Adiabatic two-phase frictional pressure drops in microchannels // Experimental thermal and fluid science. 2007. Vol. 31.
17. Sun L., Mishima K. A. Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels // International journal of multiphase flow. 2009. Vol. 35.
18. Lee H. J., Lee S. Y. Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights // International journal of multiphase flow. 2001. Vol. 27.
19. Ribatski G., Wojtan L., Thome J. R. An analysis of experimental data and prediction methods for two-phase frictional pressure drop and flow boiling heat transfer in micro-scale channels // Experimental thermal and fluid science. 2006. Vol. 31 (1).
20. Lombardi C., Carsana C. G. A dimensionless pressure drop correlation for two-phase mixtures flowing up flow in vertical ducts covering wide parameter range // Heat and technology. 1992. Vol. 10 (1–2).
21. Tu X., Hrnjak P. S. Pressure drop and visualization of R134a two-phase flow in a rectangular microchannel. Part I // ASHRAE Transactions. 2003. Vol. 109.
22. Carbon dioxide flow boiling in a single microchannel. Part I: Pressure drops / M. Ducoulombier, S. Colasson, J. Bonjour, P. Haberschill // Experimental thermal and fluid science. 2011. Vol. 35 (4).
23. Flow-regime-based model for pressure drop predictions in microchannels / G. V. Niño, W. E. Jassim, P. S. Hrnjak, A. T. Newell // HVAC&R Research. 2006. Vol. 12(1).