1. Yang S., Tian J., Jiang H. Corresponding state principle based correlation for the thermal conductivity of saturated refrigerants liquids from Ttr to 0.90Tc. Fluid Phase Equilib. 2020. V. 509. P. 112459.
2. Mehmadi-Kartalaie A., Mohammadi Nafchi A., Hashemi-Moghaddam H., Vakili M.H. An Empirical Correlation for Estimation of the Thermal Conductivity of Saturated Liquid Refrigerants. Phys. Chem. Res.2019.V. 7. P. 167-180.
3. Di Nicola G., Ciarrocchi E., Pierantozzi M., Stryjek R. A new equation for the thermal conductivity prediction of pure liquid compounds. J. Therm. Anal. Calorim. 2014. V. 116. P. 135-140.
4. Lemmon E.W., Huber M.L., McLinden M.O. REFPROP: Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database. Version 9.1. 2018.
5. DiNicolaG., CiarrocchiE.,CocciaG.,PierantozziM. Correlations of thermal conductivity for liquid refrigerants at atmospheric pressure or near saturation.Int. J. Refrig.2014. V. 45. P. 168-176.
6. Amooey A. A. A new equation for the thermal conductivity of liquid refrigerants over wide temperature and pressure ranges. J. Eng. Phys. Thermophys. 2017. V. 90, No.2. P. 392-396.
7. Рыков С.В., Кудрявцева И.В., Попов П.В., Нурышева М. Метод моделирования линии фазового равновесия R-245fa. // Вестник Международной академии холода. 2021. № 3. С. 65-74. DOI: 10.17586/1606-4313-2021-20-3-65-74 [Rykov S.V., Kudryavtseva I.V., Popov P.V., Nurysheva M. R-245fa phase equilibrium line modeling method. Journal of International Academy of Refrigeration. 2021. No 3. p. 65-74. DOI: 10.17586/1606-4313-2021-20-3-65-74. (in Russian)]
8. Рыков С.В., Кудрявцева И.В., Рыков В.А., Свердлов А.В., Нурышева М.Анализ различных моделей среднего диаметра линии фазового равновесия R236ea // Вестник Международной академии холода. 2019. № 3. С. 87-93. [Rykov S.V., Kudryavtseva I.V., Rykov V.A., Sverdlov A.V., Nurysheva M. Analysis of various models of the average diameter of phase equilibrium line R236ea. Journal of International Academy of Refrigeration.2019. No 3. p.87-93. (in Russian)]
9. Rykov S.V., Kudryavtseva I.V., Rykov V.A., Ustyuzhanin E.E. Description of the liquid-vapor phase equilibrium line of pure substances within the bounds of scale theory based on the Clapeyron equation. J. Phys.: Conf. Ser.2021. V. 2057. P. 012113.
10. Poling B.E., Prausnitz J.M., O’Connell J.P. The Properties of Gases and Liquids. 2001. 5th ed. McGraw-Hill, New York.
11. Scheffy W.Y., Johnson, E.F., Thermal Conductivities of Liquids at High Temperatures. J. Chem. Eng. Data. 1961. V. 6. P. 245-249.
12. Baroncini C., Di Filippo P., Latini, G., Pacetti M. Thermal conductivity of liquids: comparison of predicted values with experimental results at different temperatures. High. Temp.-High Press. 1979. V. 11. P. 581-586.
13. Baroncini C., Di Filippo P., Latini G. Thermal conductivity estimation of the organic and inorganic refrigerants in the saturated liquid state. Int. J. Refrig. 1983. V. 6. P. 60-62.
14. Latini G., Baroncini C., Pierpaoli P. Liquids under pressure: an analysis of methods for thermal conductivity prediction and a general correlation. High Temp.-High Press. 1987. V. 19. P. 43-50.
15. Latini G., Sotte M. Refrigerants of the methane, ethane and propane series: thermal conductivity calculation along the saturation line. Int. J. Air-Conditioning Refrig. 2011. V. 19. P. 37-43.
16. Latini G., Sotte M. Thermal conductivity of refrigerants in the liquid state: A comparison of estimation methods. Int. J. Refrig. 2012. V. 35. P. 1377-1383.
17. Gharagheizi F., Ilani-Kashkouli P., Sattari M., Mohammadi A.H., Ramjugernath D., Richon D. Development of a General Model for Determination of Thermal Conductivity of Liquid Chemical Compounds at Atmospheric Pressure. AIChE J. 2013. V. 59. P. 1702-1708.
18. Цветков О.Б., Митропов В.В., Лаптев Ю.А. Теплопроводность жидких гидрофторхлорпроизводных олефинов. Корреляции и априорные оценки // Вестник Международной академии холода. 2021. № 3. С. 75-80. DOI: 10.17586/1606-4313-2021-20-3-75-80. [Tsvetkov O.B., Mitropov V.V., Laptev Yu.A. Thermal conductivity of liquid hydrofluorochloroderivatives of olefins. Correlations and a priori estimates. Journal of International Academy of Refrigeration. 2021. No 3. p. 75-80. DOI: 10.17586/1606-4313-2021-20-3-75-80. (in Russian)]
19. Tsvetkov O.B., Mitropov V.V., Prostorova A.O., Laptev Yu.A. Thermal conductivity prediction of Trans-1-Chloro-3,3,3-Trifluoropropene (R1233zd(E)). J. Phys.: Conf. Ser. 2020. V. 1683. P. 032021.
20. Di Nicola G., Pierantozzi M., Petrucci G., Stryjek R. Equation for the Thermal Conductivity of Liquids and an Artificial Neural Network. J. Thermophys. Heat Transfer. 2016. V. 30. P. 1–10.
21. Miyara A., Fukuda R., Tsubaki K. Thermal conductivity of saturated liquid of R1234ze(E)+R32 and R1234yf+R32 mixtures. Trans. of the JSRAE. 2011. V. 28, No. 4. P. 435–443.
22. Perkins R.A., Huber M.L. Measurement and Correlation of the Thermal Conductivity of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-Tetrafluoropropene (R1234ze(E)). J. Chem. Eng. Data. 2011. V. 56. P. 4868-4874.
23. Perkins R.A., Huber M.L., Assael M.J. Measurements of the Thermal Conductivity of 1,1,1,3,3-Pentafluoropropane (R245fa) and Correlations for the Viscosity and Thermal Conductivity Surfaces. J. Chem. Eng. Data. 2016. V. 61, No 9. P. 3286-3294.
24. Froba A.P., Krzeminski K., Leipertz A. Thermophysical Properties of 1,1,1,3,3-Pentafluorobutane (R365mfc). Int. J. Thermophys. 2004. V. 25, No. 4. P. 987-1004.
25. Alam Md.J., Yamaguchi K., Hori Y., Kariya K., Miyara A. Measurement of thermal conductivity and viscosity of cis-1-chloro-2,3,3,3-tetrafluoropropene (R-1224yd(Z)). Int. J. Refrig. 2019. V. 104. P. 221-228.
26. Alam Md.J., Islam M.A., Kariya K., Miyara A. Measurement of thermal conductivity and correlations at saturated state of refrigerant trans-1-chloro-3,3,3-trifluoropropene (R-1233zd(E)). Int. J. Refrig. 2018. V. 90. P. 174-180.
27. Perkins R.A., Huber M.L. Measurement and Correlation of the Thermal Conductivity of trans-1-Chloro-3,3,3-trifluoropropene (R1233zd(E)). J. Chem. Eng. Data. 2017. V. 62. P. 2659-2665.
28. Kim D., Liu H., Yang X., Yang F., Morfitt J., Arami-Niya A., Ryu M., Duan Y., May E.F. Thermal conductivity measurements and correlations of pure R1243zf and binary mixtures of R32+R1243zf and R32+R1234yf. Int. J. Refrig. 2021. (in press). https://doi.org/10.1016/j.ijrefrig.2021.07.019
29. Haowen G., Xilei W., Yuan Zh., Zhikai G., Xiaohong H., Guangming Ch. Experimental and Theoretical Research on the Saturated Liquid Thermal Conductivity of HFO-1336mzz(E). Ind. Eng. Chem. Res. 2021. V. 60, No 26. P. 9592-9601.
30. Mondal D., Kariya K., Tuhin A.R., Miyoshi K., Miyara A. Thermal conductivity measurement and correlation at saturation condition of HFO refrigerant trans-1,1,1,4,4,4-hexafluoro-2-butene (R1336mzz(E)). Int. J. Refrig. 2021. V. 129. P. 109-117.
31. Alam Md.J., Islam M.A., Kariya K., Miyara A. Measurement of thermal conductivity of cis-1,1,1,4,4,4-hexafluoro-2-butene (R-1336mzz(Z)) by the transient hot-wire method. Int. J. Refrig. 2017. V. 84. P. 220-227.
32. Perkins R.A., Huber M.L. Measurement and Correlation of the Thermal Conductivity of cis-1,1,1,4,4,4-hexafluoro-2-butene. Int. J. Thermophys. 2020. V. 41. P. 103.
33. Колобаев В.А., Рыков С.В., Кудрявцева И.В., Устюжанин Е.Е., Попов П.В., Рыков В.А., Свердлов А.В., Козлов А.Д.Методика построения уравнения состояния и термодинамических таблиц для хладагента нового поколения // Измерительная техника. 2021. № 2. С. 9-15. [Kolobaev V. A., Rykov S. V., Kudryavtseva I. V., Ustyuzhanin E. E., Popov P. V., Rykov V. A., Sverdlov A.V., Kozlov A.D. Methodology for constructing the equation of state and thermodynamic tables for a new generation refrigerant. Measuring equipment. 2021. No. 2. pp. 9-15. (in Russian)]
34. Rykov S.V., Kudriavtseva I.V., Sverdlov A.V., Rykov V.A. Calculation method of R1234yf phaseequilibrium curve within temperature range from 122.6 K to 367.85 K. AIP Conference Proceedings.2020. V. 2285.P.030070.
35. Ма Ш. Современная теория критических явлений. М.: Мир. 1980. 298 с. [Ma Sh. Modern theory of critical phenomena. Moscow: Mir. 1980. 298 p.(in Russian)]
36. Rykov S.V., Rykov V.A., Kudryavtseva I.V., Ustyuzhanin E.E., Sverdlov A.V. Fundamental equationof state of argon, satisfying the scaling hypothesis and working in the region of high temperatures and pressures. Mathematica Montisnigri. 2020. V. 47. P. 124-136.
37. Рыков С.В., Кудрявцева И.В., Рыков В.А., Нурышева М., Курбанов Б.Х. Линия фазового равновесия этана //Вестник Международной академии холода. 2021. № 2. С. 98-104. DOI: 10.17586/1606-4313-2021-20-2-98-104 [RykovS.V., KudryavtsevaI.V., RykovV.A., NuryshevaM., KurbanovB.Kh. Ethanephaseequilibriumline. Journal of International Academy of Refrigeration. 2021. No 2. p. 98-104. DOI: 10.17586/1606-4313-2021-20-2-98-104.(in Russian)]