1. Rykov S.V., Kudryavtseva I.V., Rykov V.A., Ustyuzhanin E.E. Description of the liquid-vapor phase equilibrium line of pure substances within the bounds of scale theory based on the Clapeyron equation // J. Phys.: Conf. Ser. 2021. V. 2057 P. 012113.
2. Rykov V.A., Rykov S.V., Sverdlov A.V. Fundamental equation of state for R1234yf // J. Phys.: Conf. Ser. 2019. V. 1385. P. 012013.
3. Цветков О.Б., Митропов В.В., Лаптев Ю.А. Теплопроводность жидких гидрофторхлорпроизводных олефинов. Корреляции и априорные оценки // Вестник Международной академии холода. 2021. № 3. С. 75-80. DOI: 10.17586/1606-4313-2021-20-3-75-80
4. Tomassetti S., Di Nicola G., Kondou Ch. Triple point measurements for new low- global-warming-potential refrigerants: Hydro-fluoro-olefins, hydro-chloro-fluoro-olefins, and trifluoroiodomethane // Int. J. Refrig. 2022. V. 133. P. 172-180.
5. Ma Sh. Modern Theory of Critical Phenomena (New York, NY: Roudedge). 2018.
6. Di Nicola G., Brandoni C., Di Nicola C., Giuliani G. Triple point measurements for alternative refrigerants // J. Therm. Anal. Calorim. 2012. V. 108. P. 627-631.
7. Akasaka R., Lemmon E.W. Fundamental Equations of State for cis-1,3,3,3-Tetrafluoropropene [R-1234ze(Z)] and 3,3,3-Trifluoropropene (R-1243zf) // J. Chem. Eng. Data. 2019. V. 64. P. 4679-4691.
8. Sakoda N., Higashi Y., Akasaka R. Measurements of PvT Properties, Vapor Pressures, Saturated Densities, and Critical Parameters for trans-1,1,1,4,4,4-Hexafluoro-2-butene (R1336mzz(E)) // J. Chem. Eng. Data. 2021. V. 66. P. 734–739.
9. Haowen G., Xilei W., Yuan Zh., Zhikai G., Xiaohong H., Guangming Ch. Experimental and Theoretical Research on the Saturated Liquid Thermal Conductivity of HFO-1336mzz(E) // Ind. Eng. Chem. Res. 2021. V. 60. P. 9592-9601.
10. McLinden M.O., Akasaka R. Thermodynamic Properties of cis-1,1,1,4,4,4-Hexafluorobutene [R‑1336mzz(Z)]: Vapor Pressure, (p, ρ, T) Behavior, and Speed of Sound Measurements and Equation of State // J. Chem. Eng. Data. 2020. V. 65. P. 4201-4214.
11. Perkins R.A., Huber M.L. Measurement and Correlation of the Thermal Conductivity of cis‑1,1,1,4,4,4‑hexafluoro‑2‑butene // Int. J. Thermophys. 2020. V. 41. P. 103.
12. Sakoda N., Higashi Y., Akasaka R. Measurements of Vapor Pressures for trans-1-Chloro-3,3,3-trifluoropropene (R1233zd(E)) and cis-1,1,1,4,4,4-Hexafluoro-2-butene (R1336mzz(Z)) // J. Chem. Eng. Data. 2020. V. 65. P. 4285-4289.
13. Brown J.S., Di Nicola G., Fedele L., Bobbo S., Zilio C. Saturated pressure measurements of 3,3,3-trifluoroprop-1-ene (R1243zf) for reduced temperatures ranging from 0.62 to 0.98 // Fluid Phase Equilib. 2013. V. 351. P. 48-52.
14. Higashi Y., Sakoda N., Islam Md.A., Takata Y., Koyama Sh., Akasaka R. Measurements of Saturation Pressures for Trifluoroethene (R1123) and 3,3,3-Trifluoropropene (R1243zf) // J. Chem. Eng. Data. 2018. V. 63. P. 417-421.
15. Yang Zh., Tang X., Wu J., Lu J. Experimental measurements of saturated vapor pressure and isothermal vapor-liquid equilibria for 1,1,1,2-Tetrafluoroethane (HFC-134a) + 3,3,3-trifluoropropene (HFO-1243zf) binary system // Fluid Phase Equilib. 2019. V. 498. P. 86–93.
16. Yin J., Ke J., Zhao G., Ma S. Saturated vapor pressure and gaseous pvT property measurements for 3,3,3-trifluoroprop-1-ene (R1243zf) // Int. J. Refrig. 2020. V. 117. P. 175-180.
17. Ding L., Yao X., Hou Y., Zhao Y., Dong X., Gong M. Isothermal (vapour-liquid) equilibrium for the binary {3,3,3-trifluoropropene (R1243zf) + propane(R290)} system at temperatures from 243.150 K to 288.150 K // J. Chem. Thermodyn. 2020. V. 144. P. 106091.
18. Yao X., Ding L., Dong X., Zhao Y., Wang X., Shen J., Gong M. Experimental measurement of vapor-liquid equilibrium for 3,3,3-trifluoropropene (R1243zf) + 1,1,1,2-tetrafluoroethane (R134a) at temperatures from 243.150 to 293.150 K // Int. J. Refrig. 2020. V. 120. P. 97-103.
19. Tanaka K., Ishikawa J., Kontomaris K.K. Thermodynamic properties of HFO-1336mzz(E) (trans-1,1,1,4,4,4-hexafluoro-2-butene) at saturation conditions // Int. J. Refrig. 2017. V. 82. P. 283-287.
20. Boonaert E., Valtz A., Brocus J., Coquelet Ch., Beucher Y., De Carlan F., Fourmigué J. Vapor-Liquid equilibrium measurements for 5 binary mixtures involving HFO-1336mzz(E) at temperatures from 313 to 353 K and pressures up to 2.735 MPa // Int. J. Refrig. 2020. V. 114. P. 210-220.
21. Raabe G. Molecular Simulation Studies on the Vapor-Liquid Equilibria of the cis- and trans-HCFO-1233zd and the cis- and trans-HFO-1336mzz // J. Chem. Eng. Data. 2015. V. 60. P. 2412-2419.
22. Li Sh., Xu L., Liu H., Yang Zh., Duan Y. Vapor Pressure Measurements and Correlation for cis-1,1,1,4,4,4-Hexafluoro-2-butene (HFO-1336mzz(Z)) // J. Chem. Eng. Data. 2020. V. 65. P. 4223-4229.
23. Tanaka K., Akasaka R., Sakaue E., Ishikawa J., Kontomaris K.K. Thermodynamic Properties of cis-1,1,1,4,4,4-Hexafluoro-2-butene (HFO-1336mzz(Z)): Measurements of the pρT Property and Determinations of Vapor Pressures, Saturated Liquid and Vapor Densities, and Critical Parameters // J. Chem. Eng. Data. 2016. V. 61. P. 2467-2473.
24. Rykov S.V., Kudryavtseva I.V., Rykov V.A., Ustyuzhanin E.E., Ochkov V.F. Analysis of the saturation line on the basis of Clapeyron-Clausius and Gibbs-Duhem equations // J. Phys.: Conf. Ser. 2019. V. 1147. P. 012017.
25. Форсайт Дж., Малькольм Н., Моулер К. Машинные методы математических вычислений. М.: Мир, 1980. 280 с.
26. Рыков С.В., Кудрявцева И.В., Рыков С.А., Рыков В.А. Практикум по работе в математическом пакете MathCAD: СПб.: НИУ ИТМО, ИХиБТ, 2015. 84 с.
27. Колобаев В.А., Рыков С.В., Кудрявцева И.В., Устюжанин Е.Е., Попов П.В., Рыков В.А., Свердлов А.В., Козлов А.Д. Методика построения уравнения состояния и термодинамических таблиц для хладагента нового поколения // Измерительная техника. 2021. № 2. С. 9-15.
28. Рыков С.В., Кудрявцева И.В., Рыков В.А., Нурышева М., Курбанов Б.Х. Линия фазового равновесия этана // Вестник Международной академии холода. 2021. № 2. С. 98-104. DOI: 10.17586/1606-4313-2021-20-2-98-104
29. Rykov S.V., Kudriavtseva, I.V. Sverdlov A.V., Rykov V.A. Calculation method of R1234yf phase equilibrium curve within temperature range from 122.6 K to 367.85 K // AIP Conf. Proc. 2020. V. 2285. P. 030070.
30. Kudryavtseva I.V., Rykov V.A., Rykov S.V., Ustyuzhanin E.E. A model system of the liquid density, the gas density and the pressure on the saturation line of SF6 // J. Phys.: Conf. Ser. 2019. V. 1385. P. 012010
31. Rykov S.V., Rykov V.A., Kudryavtseva I.V., Ustyuzhanin E.E., Sverdlov A.V. Fundamental equation of state of argon, satisfying the scaling hypothesis and working in the region of high temperatures and pressures // Mathematica Montisnigri. 2020. V. 47. P. 124-136.
32. Kudryavtseva I.V., Rykov V.A., Rykov S.V., Ustyuzhanin E.E. A new variant of a scaling hypothesis and a fundamental equation of state based on it // J. Phys.: Conf. Ser. 2018. V. 946. P. 012118.
33. Уэйлес С. Фазовые равновесия в химической технологии. I часть. М.: Мир, 1989. 301 с.
34. Цветков О.Б., Лаптев Ю.А., Митропов В.В., Шарков А.В., Федоров А.В. Интерпретация фононной модели теплопроводности транс-1-хлор-3,3,3-трифторпропена (НFO-1233zd (E)) на жидкостной ветви бинодали // Вестник Международной академии холода. 2020. № 1. С. 103-107.