1. Khan, M.S.A., et al. Configuration based modeling and performance analysis of single effect solar absorption cooling system in TRNSYS.Energy conversion and management, 2018. 157: p. 351-363.
2. Camara S., Sulin A.B. Study of a double-acting solar collector for use in the absorption cooling system in hot regions. Thermal Science and Engineering Progress, 2022: p. 101286.
3. Mortadi, M. and A. El Fadar, Performance, economic and environmental assessment of solar cooling systems under various climates. Energy Conversion and Management, 2022. 252: p. 114993.
4. El Marazgioui, S. and A. El Fadar. Impact of cooling tower technology on performance and cost-effectiveness of CSP plants. Energy Conversion and Management, 2022. 258: p. 115448.
5. Mehregan M., et al. Energy, economic, environmental investigations and optimization of a combined cooling, heating and power system with hybrid prime mover of gas engine and flat plate solar collector. Energy Conversion and Management, 2022. 251: p. 115018.
6. Hu, T., T.H. Kwan, and G. Pei. An all-day cooling system that combines solar absorption chiller and radiative cooling. Renewable Energy, 2022.
7. Liang, H., et al. Experimental investigation on spectral splitting of photovoltaic/thermal hybrid system with two-axis sun tracking based on SiO2/TiO2 interference thin film. Energy Conversion and Management, 2019. 188: p. 230-240.
8. Bellos, E., Tzivanidis C., Antonopoulos K.A. A detailed working fluid investigation for solar parabolic trough collectors.Applied Thermal Engineering, 2017. 114: p. 374-386.
9. Bellos, E., Tzivanidis C. Multi-objective optimization of a solar driven trigeneration system. Energy, 2018. 149: p. 47-62.
10. Chen, Y., et al. Exergo-environmental cost optimization of a solar-based cooling and heating system considering equivalent emissions of life-cycle chain. Energy Conversion and Management, 2022. 258: p. 115534.
11. Mikovits, C., et al. A spatially highly resolved ground mounted and rooftop potential analysis for photovoltaics in austria.ISPRS International Journal of Geo-Information, 2021. 10(6): p. 418.
12. Muhammed, E., S. Morsy, and A. El-Shazly. Building Rooftops Extraction for Solar PV Potential Estimation Using Gis-Based Methods. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2021. 44: p. 119-125.
13. Sanaye, S. and A. Sarrafi. Cleaner production of combined cooling, heating, power and water for isolated buildings with an innovative hybrid (solar, wind and LPG fuel) system. Journal of Cleaner Production, 2021. 279: p. 123222.
14. Chen, H., Z. Li, and B. Sun. Performance evaluation and parametric analysis of an integrated diurnal and nocturnal cooling system driven by photovoltaic-thermal collectors with switchable film insulation. Energy Conversion and Management, 2022. 254: p. 115197.
15. Wang, J., et al. Robust multi-objective optimization with life cycle assessment of hybrid solar combined cooling, heating and power system. Energy Conversion and Management, 2021. 232: p. 113868.
16. Hu, M., et al. Numerical study and experimental validation of a combined diurnal solar heating and nocturnal radiative cooling collector. Applied Thermal Engineering, 2018. 145: p. 1-13.
17. Hu, M., et al. Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system. Applied energy, 2016. 179: p. 899-908.
18. Shirazi, A., et al. A comprehensive, multi-objective optimization of solar-powered absorption chiller systems for air-conditioning applications. Energy Conversion and Management, 2017. 132: p. 281-306.
19. Xu, Z. and R. Wang.Simulation of solar cooling system based on variable effect LiBr-water absorption chiller. Renewable energy, 2017. 113: p. 907-914.
20. Asadi, J., et al. Thermo-economic analysis and multi-objective optimization of absorption cooling system driven by various solar collectors. Energy Conversion and Management, 2018. 173: p. 715-727.
21. Khan, M.S., et al. A new correlation for performance prediction of small and large capacity single-effect vapor absorption refrigeration systems. Cleaner Energy Systems, 2022. 1: p. 100002.
22. Ibrahim, N.I., et al. Economic analysis of a novel solar-assisted air conditioning system with integral absorption energy storage. Journal of Cleaner Production, 2021. 291: p. 125918.
23. Porumb, R., B. Porumb, and M. Balan. Numerical investigation on solar absorption chiller with LiBr-H2O operating conditions and performances. Energy Procedia, 2017. 112: p. 108-117.
24. Narayanan, R., G.K. Harilal, and S. Golder. Feasibility study on the solar absorption cooling system for a residential complex in the Australian subtropical region. Case Studies in Thermal Engineering, 2021. 27: p. 101202.
25. Hashem, G., et al. Development and experimental investigation of a novel solar-powered cooling system. Energy Conversion and Management, 2021. 244: p. 114486.
26. Liu, M., et al. Dynamic performance analysis of a solar driving absorption chiller integrated with absorption thermal energy storage. Energy Conversion and Management, 2021. 247: p. 114769.
27. Liu, L., et al. Energetic, economic and environmental study of cooling capacity for absorption subsystem in solar absorption-subcooled compression hybrid cooling system based on data of entire working period. Energy Conversion and Management, 2018. 167: p. 165-175.
28. Ochoa, A., et al. The influence of the overall heat transfer coefficients in the dynamic behavior of a single effect absorption chiller using the pair LiBr/H2O. Energy Conversion and Management, 2017. 136: p. 270-282.
29. Prasartkaew, B. Performance test of a small size LiBr-H2O absorption chiller. Energy Procedia, 2014. 56: p. 487-497.
30. Saleh, A. and M. Mosa. Optimization study of a single-effect water–lithium bromide absorption refrigeration system powered by flat-plate collector in hot regions. Energy conversion and management, 2014. 87: p. 29-36.
31. Ahmed, S., et al. A review on the integration of radiative cooling and solar energy harvesting.Materials Today Energy, 2021. 21: p. 100776.
32. Eicker, U. and A. Dalibard. Photovoltaic–thermal collectors for night radiative cooling of buildings. Solar Energy, 2011. 85(7): p. 1322-1335.
33. Zevenhoven, R. and M. Fält. Radiative cooling through the atmospheric window: A third, less intrusive geoengineering approach. Energy, 2018. 152: p. 27-33.
34. Zeyghami, M., D.Y. Goswami, and E. Stefanakos. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling.Solar Energy Materials and Solar Cells, 2018. 178: p. 115-128.
35. Zhao, B., et al. Radiative cooling: A review of fundamentals, materials, applications, and prospects. Applied energy, 2019. 236: p. 489-513.
36. Zhao, B., et al. Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling. Appliedenergy, 2019. 252: p. 113432.
37. Камара С., Сулин А.Б. Аналитический обзор пассивных радиационных систем охлаждения. // Вестник международной академии холода. 2020. №2, с. 37-44.[Camara S., Sulin A.B. Analytical review of passive radiative cooling systems. Journal of International Academy of Refrigeration.. 2020. No 2. p.37-44. (in Russian)]
38. Камара С., Сулин А.Б., Лысёв В.И. Аналитическое исследование производительности коллектора комбинированного типа для солнечного нагрева и ночного радиационного охлаждения. // Вестник международной академии холода. 2022. № 1. с. 26-36.[Camara S., Sulin A.B., Lysev V.I. Analyzing the performance of a combined type collector for solar heating and night radiation cooling. Journal of International Academy of Refrigeration. 2022. No 1. p.26-36. DOI: 10.17586/1606-4313-2022-21-1-26-36.(in Russian)]
39. Bellos, E., et al. Energetic, exergetic and financial evaluation of a solar driven absorption chiller–A dynamic approach. Energy conversion and management, 2017. 137: p. 34-48.
40. Kalogirou, S.A. Solar energy engineering: processes and systems. 2013: Academic press.
41. Allan, J., et al. Performance testing of thermal and photovoltaic thermal solar collectors. Energy Science & Engineering, 2015. 3(4): p. 310-326.
42. Ji, J., et al. Experimental investigation of tri-functional photovoltaic/thermal solar collector. Energy conversion and management, 2014. 88: p. 650-656.
43. Duffie, J.A. and W.A. Beckman. Solar engineering of thermal processes. WileyNewYork.1980:
44. Камара С., Сулин А., Рябова Т. Абсорбционная холодильная машинас солнечным коллектором комбинированного типа. // Техника и технология нефтехимического и нефтегазового производства. 2022.[Kamera S., Sulin A., Ryabova T. Absorption refrigerating machine with a combined solar collector. Equipment and technology of petrochemical and oil and gas production. 2022. (in Russian)]
45. Bellos, E., I. Chatzovoulos, and C. Tzivanidis. Yearly investigation of a solar-driven absorption refrigeration system with ammonia-water absorption pair. Thermal Science and Engineering Progress, 2021. 23: p. 100885.
46. Kaynakli, O. and M. Kilic. Theoretical study on the effect of operating conditions on performance of absorption refrigeration system. Energy conversion and management, 2007. 48(2): p. 599-607.
47. Li, M., et al. Experimental investigation on the performance of a solar powered lithium bromide–water absorption cooling system. International journal of refrigeration, 2016. 71: p. 46-59.
48. Bellos, E. and C. Tzivanidis. Energetic and financial analysis of solar cooling systems with single effect absorption chiller in various climates. Applied Thermal Engineering, 2017. 126: p. 809-821.