1. Pezhman Akbari Razi Nalim Norbert Mueller. A Review of Wave Rotor Technology and Its Applications. Journal of Engineering for Gas Turbines and Power. October 2006, Vol. 128. P. 717-735. DOI: 10.1115/1.2204628
2. Бондаренко В.Л. Создание и исследование волновых криогенераторов и их применение в технологии получения неона высокой чистоты: дис. ...док. техн. наук. М. 2003. 294 с.[Bondarenko V.L. Creation and research of wave cryogenerators and their application in the technology of high purity neon production: dissertation of the Doctor of Technical Sciences, Moscow, 2003. 294 p. (inRussian)]
3. Малахов С.Б. Разработка и исследование роторного волнового криогенератора для установок сжижения природного газа. Диссертациянасоисканиеученойстепеникандидататехническихнаук. 2013. [Malakhov S.B. Development and research of a rotary wave cryogenerator for natural gas liquefaction plants. Dissertation for the degree of Candidate of Technical Sciences. 2013. (in Russian)]
4. Семенов В.Ю. Разработка и исследование высокоэффективных малотоннажных установок сжижения природного газа: дис. … д.т.н. М. 2016. 331 с.[Semenov V.Y. Development and research of highly efficient low-tonnage natural gas liquefaction plants: Dissertation, Doctor of Technical Sciences, Moscow, 2016. 331 p. (in Russian)]
5. Yiming Zhao et al. Numerical Simulation Research on the Effect of the Rotor Passage Cross-Sectional Dimension on the Performance of Gas Wave Ejector. Journal of Physics: Conference Series. 2329 (2022) 012026. DOI: 10.1088/1742-6596/2329/1/012026
6. Yiming Zhao, Haoran Li and Dapeng Hu. Performance experiments with a gas wave ejector equipped with curved channels and an analysis of the influence of channel angles. RSC Adv., 2022, 12, pp. 17294-17311. DOI: 10.1039/d2ra02577a
7. Nalim M.R., Izzy Z.A., Akbari P. Rotary wave-ejector enhanced pulse detonation engine. ShockWaves.2011: 22(1). DOI: 10.1007/s00193-011-0348-5
8. Верещагина Т.Н., Михеев А.С., Кудряева Ю.В. Термоакустический эффект и его применение // ВАНТ. Серия: Ядерно-реакторные константы. 2021. № 2. С. 127-138.DOI: 10.55176/2414-1038-2021-2-127-138 [VereshchaginaT.N., MikheevA.S., KudryavtsevaYu.V. Thermoacousticeffectanditsapplication. Series: Nuclear reactor constants. 2021. No. 2. pp. 127-138. DOI: 10.55176/2414-1038-2021-2-127-138 (in Russian)]
9. Jia Ning, Yulin Lei, Hong Hu and Chenhui Gai. A Comprehensive Review of Surface Acoustic Wave-Enabled Acoustic Droplet Ejection Technology and Its Applications. Micromachines. 2023, 14, 1543.
10. Yuan Ning, Menglun Zhang, Hongxiang Zhang, Xuexin Duan, Yi Yuan, Buohua Liua, Wei Pang. Mechanism and stability investigation of a nozzle-free droplet-on-demand acoustic ejector. Analyst, 2021, 146, 5650-5657.
11. K. Augustine Babu, P. Sherjin. A Critical Review on Thermoacoustic Refrigeration and its Significance. International Journal of ChemTech Research. 2017. Vol. 10, No. 7, pp. 540-552.
12. Alcock A.C., Tartibu L.K. and Jen T.C. Design and construction of a thermoacoustically driven thermoacoustic refrigerator. International Conference on the Industrial and Commercial Use of Energy (ICUE). 2017. IEEE proceedings.
13. Vraj S. Shah, Ankit K. Parekh, Kush T. Pandya, Meet R. Bhavsar. Analysis of Thermo-Acoustic Refrigeration System. International Research Journal of Engineering and Technology (IRJET). 2021. Vol. 08, Issue 08, pp 800-805.
14. Tartibu L.K. Developing more efficient travelling-wave thermo-acoustic refrigerators: A review. Sustainable Energy Technologies and Assessments, 2019. Vol. 31, pp.102-114.
15. K. Augustine Babu, P. Sherjin. Experimental investigations of the performance of a thermoacoustic refrigerator based on the Taguchi method. Journal of Mechanical Science and Technology. 2018. 32 (2): 929-935. DOI: 10.1007/s12206-018-0143-x
16. Raut A.S., et al. Review of investigations in eco-friendly thermoacoustic refrigeration system. Thermal science. 2017, Vol. 21, No. 3, pp. 1335-1347.
17. Mohammed Noorul Hussain, Isam Janajreh. Analysis of pressure wave development in a thermo-acoustic engine and sensitivity study.Energy Procedia. 2017. vol.142. Pp. 1488-1495.
18. Tartibu L.K. A sustainable solution for refrigeration using thermo-acoustic technology. International Conference on the Domestic Use of Energy (DUE). March 2016. DOI: 10.1109/DUE.2016.7466714
19. Zhang, X., Chang, J., Cai, S. and Hu, J., 2016. A multi-stage travelling wave thermoacoustic engine driven refrigerator and operation features for utilizing low grade energy. Energy Conversion and Management, 114, pp.224-233.
20. High-efficiency heat-driven acoustic cooling engine with no moving parts. The USpatent.no. 5901556 from05/11/99.
21. Белозерцев В.Н., Пулькина А.Ю. Проблемы и перспективы систем охлаждения с термоакустическим приводом // Вестник Международной академии холода. 2017. No 3. С. 41-46. DOI: 10.21047/1606-4313-2017-16-3-41-46[Belozertzew W.N., Pulkina A.Yu. Heat-driven thermoacoustic refrigerators: issues and prospects. Journal of International Academy of Refrigeration. 2017. No 3. p. 41-46. DOI: 10.21047/1606-4313-2017-16-3-41-46 (in Russian)]
22. Luo K., Sun D.M., Zhang J., Shen Q. and Zhang N., A multi-stage traveling-wave thermoacoustically-driven refrigeration system operating at liquefied natural gas temperature. In IOP Conference Series: Materials Science and Engineering. 2017. Vol. 278, No. 1, p. 012139.
23. Архаров А.М., Бондаренко В.Л., Симоненко Ю.М. Систематизация пульсаторов, используемых для привода газодинамических аппаратов // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2010. C. 97-110.[Arkharov A.M., Bondarenko V.L., Simonenko Yu.M. Systematization of pulsators used to drive gas-dynamic devices. Bulletin of the Bauman Moscow State Technical University. Ser. Mechanical Engineering. 2010. p. 97-110. (inRussian)]
24. АрхаровА.М.Высокоэффективныйроторныйволновойкриогенератор/ А.М. Архаров, И.А. Архаров, В.Ю. Семенов, С.Б. Малахов, А.C. Малахов // Химическоеинефтегазовоемашиностроение. 2020. №2. С. 21-25. [Arkharov A.M. Highly efficient rotary wave cryogenerator / A.M. Arkharov, I.A. Arkharov, V.Y. Semenov, S.B. Malakhov, A.C. Malakhov. Chemical and oil and gas engineering. 2020. No. 2. pp. 21-25. (in Russian)]
25. Козлов А.В., Бобров Д.М., Лаухин Ю.А. Волновой детандер с энергообменными каналами переменной площади сечения // Химическое и нефтяное машиностроение. 2000. №11. С. 27-29.[Kozlov A.V., Bobrov D.M., Laukhin Yu.A. Wave expander with energy exchange channels of variable cross-sectional area. Chemical and petroleum engineering. 2000. No. 11. pp. 27-29.(inRussian)]
26. Лаухин Ю.А., Бобров Д.М. Анализ результатов исследования аппаратов пульсационного охлаждения газа // Научн. труды ВНИИГАЗ. Новое оборудование и технология процессов подготовки и переработки газа и конденсата. 1981. С. 96-108.[Laukhin Yu.A., Bobrov D.M. Analysis of the results of the study of pulsation gas cooling devices. Scientific proceedings of VNIIGAZ. New equipment and technology for the preparation and processing of gas and condensate. 1981. pp. 96-108.(inRussian)]
27. Козлов А.В., Лаухин Ю.А. Разработка и исследования волновых детандеров // Каталог научно-технических разработок молодых специалистов 1994-1997г. Конкурс96 г. ВНИИГАЗ. 96 с.[Kozlov A.V., Laukhin Yu.A. Development and research of wave expanders. Catalog of scientific and technical developments of young specialists 1994-1997. 96 VNIIGAZ competition. 96 p.(inRussian)]
28.Бобров Д.М., Козлов А.В., Лаухин Ю.А. Расчeтно-теоретические и экспериментальные исследования волновых детандеров // Новые технологии газовой промышленности: Тез. докл. Четвeртой Всероссийской конф. молодых учeных, специалистов и студентов по проблемам газовой пром-ти России. РГУим. И.М. Губкина. Москва. 2001. 43 с.[Bobrov D.M., Kozlov A.V., Laukhin Yu.A. Computational, theoretical and experimental studies of wave expanders. New technologies of the gas industry: Thesis. dokl. The Fourth All-Russian Conference of Young Scientists, specialists and students on the problems of the Russian gas industry. Gubkin Russian State University. Moscow. 2001. 43 p.(in Russian)]
29. Pezhman Akbari, Amir A. Kharazi, Norbert Müller 2003, Utilizing wave rotor technology to enhance the turbo compression in power and refrigeration cycles. Proceedings of IMECE’03 2003 ASME International Mechanical Engineering Congress & Exposition Washington, D.C., November 16-21, 2003.
30. Ahmed Elatar, Brian Fricke, Vishaldeep Sharma and Kashif Nawaz. Pressure exchanger for energy recovery in a trans-critical CO2 refrigeration system. Energies. 2021, 14, 1754. https://doi.org/10.3390/en14061754
31. Amir A. Kharazi, Pezhman Akbari and Norbert Müller Michigan State University, East Lansing, MI, 48824. An Application of Wave Rotor Technology for Performance Enhancement of R718 Refrigeration Cycles 2nd International Energy Conversion Engineering Conference 16-19 August 2004, Providence, Rhode Island.
32. Peiqi Liua,b, Xiang Li a, Xinyu Liua, Mingyu Fenga, Yang Yua, Dapeng Hua, Ming Dao. 2021 Investigation on non-equilibrium phase transition in wave rotor. International Journal of Refrigeration. 2021. 124:96-104. DOI: 10.1016/j.ijrefrig.2020.12.015
33. Yawen Ji, Qing Feng, Jianli Wang, Yang Yu, Dapeng Hu. Performance enhancement on the three-port gas pressure dividing device by flow channel optimization of wave rotor. Chemical Engineering & Processing: Process Intensification, 2024:205:109972.