UDC 536.71
Curvilinear diameter rule and scaled equation with variables of pressure and temperature
Rykov S.V.
Abstract
A lot of models describing phase equilibrium in critical range are used. At the same time none of them has been justified properly in terms of modern theory of critical phenomena. Based on the hypothesis of the similarity of the isobar thermal capacity on critical and near-critical isotherms near critical point and new formulation of Migdal phenomenological theory scaled equation with variables of pressure and temperature have been developed for the first time. In the framework of the approach in question the physically justified equation for critical range have been obtained for the first time. The results obtained can be applied in scaled and wide range equations of state where saturation line is a supporting curve and in calculations for thermodynamic cycles in designing refrigeration and cryogenic technique.
Keywords: saturation line, critical indexes, critical point, Migdal phenomenological theory, pressure, density
All references
Ustyuzhanin E.E., Shishakov V.V., Abdulagatov I.M., Popov P.V., Rykov V.A., Frenkel M.L. Scaling Models of Thermodynamic Properties on the Coexis-tence Curve: Problems and Some Solutions. Russian Journal of Physical Chemistry B.2012. Vol. 6. No. 8. p. 912-931. (in Russian)
Ustyuzhanin E.E., Abdulagatov I.M., Popov P.V., Shishakov V.V., Rykov V.A. Skeylingovy models for the description of thermodynamic properties on a boundary curve: characteristics and criteria. Ul'trazvuk i termodinamicheskie svoistva veshchestva. 2008. No 34–35. p. 159-171. (in Russian)
Ustyuzhanin E.E., Shishakov V.V., Abdulagatov I.M., Rykov V.A., Popov P.V. Saturation pressure of technically important substances: models and calculations for critical area. Vestnik Moskovskogo energeticheskogo instituta. 2012. No 2. p. 34-43. (in Russian)
Rykov A.V., Kudryavtseva I.V., Rykov S.V. The equation of a line of the phase equilibrium, satisfying to the modified rule of curvilinear diameter. Nauchnyi zhurnal NIU ITMO. Seriya. Kholodil'naya tekhnika i konditsionirovanie. 2013. No 2. p. 9. (in Russian)
Rykov V.A. Method of calculation of -Т-parameters of boundary of stability of a uniform status of substance. Zhurnal fizicheskoi khimii. 1985. vol. 59. No 8. p. 2070. (in Russian)
Rykov S.V., Samoletov V.A., Rykov V.A. Line of saturation of ammonia.Vestnik Mezhdunarodnoi akademii kholoda. 2008. No 4. p. 20–21. (in Russian)
Rykov A.V., Kudryavtseva I.V., Rykov S.V. The equation of the saturation and elasticity line of the R218 refrigerant. Vestnik Mezhdunarodnoi akademii kholoda. 2013. No 4. p. 54–57. (in Russian)
Kudryavtseva I.V., Rykov A.V., Rykov V.A. The modified equation of the saturation line, meeting requirements of the scale theory. Nauchnyi zhurnal NIU ITMO. Seriya. Kholodil'naya tekhnika i konditsionirovanie. 2013. No 2. p. 3. (in Russian)
Rykov V.A. Thermodynamic properties of R23 on the line of saturation in the range of temperatures from 180 to 298 K. Vestnik Mezhdunarodnoi akademii kholoda. 2000. No 4. (in Russian)
Rykov S.V. Method of creation of an asymmetrical scale equation of state in physical variables. Thesis. – St. Petersburg. 2009. (in Russian)
Kudryavtseva I.V., Rykov V.A., Rykov S.V., Selina E.G., Kurova L.V. Calculation method of density and heat of vaporization of carbon dioxideNauchnyi zhurnal NIU ITMO. Seriya. Protsessy i apparaty pishchevykh proizvodstv. 2013. No 1. p. 25. (in Russian)
Rykov V.A., Ustyuzhanin E.E., Popov P.V., Kudryavtseva I.V., Rykov S.V. Ammonia. Density, an enthalpy, an entropy, isobaric and isochoric heat capacities, sonic speed in the range of temperatures 196-606 K and pressure of 0,001-100 MPa. GSSSD 227-2008. Dep. v FGUP «Standartinform» 15.05.2008 g., № 837-2008 kk. (in Russian)
Ustyuzhanin E.E., Rykov V.A, Popov P.V., Reutov B.F. Tables of standard handbook data. R134a freon. Thermodynamic properties on lines of boiling and condensation in the range of temperatures 169.85 … 374.13 K. GSSSD 182-97. Protokol №18 ot 23.12.97. Dep. VNITsSMV № 774-97 kk, 27.12.97 (2003), 24 p. (in Russian)
Rykov V.A., Ustyuzhanin E.E., Popov P.V., Kudryavtseva I.V., Rykov S.V. R23 freon. Density, an enthalpy, an entropy, isobaric and isochoric heat capacities, sonic speed in the range of temperatures 235…460 K and pressure 0,01…25 MPa. GSSSD 214-06. Dep. v FGUP «Standartinform» 08.06.2006 g., № 816-06 kk. (in Russian)
Rykov V.A., Ustyuzhanin E.E., Popov P.V., Kudryavtseva I.V., Rykov S.V. R-218 freon. Density, an enthalpy, an entropy, isobaric and isochoric heat capacities, sonic speed in the range of temperatures 160…470 K and pressure 0,001…70 MPa. GSSSD 211-05. Dep. v FGUP «Standartinform» 08.12.2005 g., № 813-05 kk. (in Russian)
Polikhronidi N.G., Abdulagatov I.M., Batyrova R.G., Stepanov G.V., Ustuzhanin E.E., Wu J.T. Experimental Study of the Thermodynamic Properties of Diethyl Ether (DEE) at Saturation. Int. J. Thermophys. 2011. No 32. p. 559.
Migdal A.A. Equation of state near critical point. ZhETF. 1972. vol. 62. No 4. p. 1559-1573. (in Russian)
Kozlov A.D., Lysenkov V.F., Popov P.V., Rykov V.A. Single non-analytic equation of R218 chladon state. Inzhenerno-fizicheskii zhurnal. 1992. vol. 62. No 6. p. 840-847.
Rykov V.A. Scale equation of state in physical variables. Teplofizika vysokikh temperatur. 1986. vol. 25. No 2. p. 345.
Rykov V.A. Scale equation of state in r-T-variable taking into account nonasymptotic members. Zhurnal fizicheskoi khimii. 1985. vol. 59. No 8. p. 2069.
Rykov V.A. Choice of structure of the chemical potential which is correctly describing the regular and near-critical areas of a thermodynamic surface.Inzhenerno-fizicheskii zhurnal. 1984. Vol. 47, No 2. p. 338. (in Russian)
Baranenko A.V., Kirillov V.V. Development of hladonositel on the basis of electrolytic water propylene glycol solutions. Kholodil'naya tekhnika i konditsionirovanie. 2007. No 3. p. 38–41. (in Russian)
Baranenko A.V., Kirillov V.V., Sivatchyov A.E. On the selection of a coolant for indirect refrigeration systems. Vestnik Mezhdunarodnoi akademii kholoda.2010. No 2. p. 22-24. (in Russian)
Khovalyg D., Baranenko A.V. Methods for calculating the pressure gradient of a two-phase flow through small-diameter conduits. Vestnik Mezhdunarodnoi akademii kholoda. 2012. No 1. p. 3-10. (in Russian)
Read the full article