UDC 621.56; 536.2
Methods for calculating the pressure gradient of a two-phase flow through small-diameter conduits
Khovalyg D.M. , Aleksandr V. Baranenko
Abstract
The behaviour of a two-phase flow in small-diameter conduits is discussed, and the methods for calculating the pressure gradient are reviewed. Experimental data have been compared with computing methods.
Keywords: heat exchanger, two-phase flow, coolant, pressure gradient.
All references
Kandlikar S. G. Fundamental issues related to flow boiling in minichannels and microchannels. Experimental thermal and fluid science. 2002. Vol. 26.
Mehendal S. S., Jacobi A. M., Shah R. K. Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design. Appl. mech. rev. 2000. Vol. 53.
Kew P. A., Cornwell K. Correlations for the prediction of boiling heat transfer in small-diameter channels. Applied thermal engineering. 1997. Vol. 17.
Carey P. Van. Liquid vapor phase change phenomena: An introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment // 2nd ed. Taylor & francis group, LLC. 2008.
Thome R. J. Engineering data book III // Wolverine tube, Inc. 2004–2010.
Suo M., Griffith P. Two-phase flow in capillary tubes. ASME J. Basic eng. 1964. Vol. 86.
Yang C.-Y., Shieh C.-C. Flow pattern of air–water and two-phase R134a in small circular tubes. International Journal of Multiphase flow. 2001. Vol. 27.
Revelline R. Experimental two-phase fluid flow in microchannels // Ph. D. thesis N 3437. Ecole polytechnique federale de lausanne. 2005.
Characterization of diabatic two-phase flows in microchannels: Flow pattern results for R134a in a 0,5 мм channel / R. Revellin, V. Dupont, T. Ursenbacher, R. J. Thome, I. Zun. International journal of multiphase flow. 2006. Vol. 32.
Jassim E. W., Newell T. A. Prediction of two-phase pressure drop and void fraction in microchannels using probabilistic flow regime mapping. International journal of heat and mass transfer. 2006. Vol. 49.
Garimella S., Killion J. D., Coleman J. W. Еxperimentally validated model for two-phase pressure drop in the intermittent flow regime for circular microchannels. Journal of fluids engineering, transactions of the ASME. 2002. Vol. 124 (1).
Chung P. M.-Y., Kawaji M. The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels. International journal of multiphase flow. 2004. Vol. 30.
Thome J. R., Dupont V., Jacobi A. M. Heat transfer model for evaporation in microchannels. Part I: Presentation of the model. International journal of heat and mass transfer. 2004. Vol. 47.
. Cioncolini A., Thome R. J., Lombardi C. Unified macro-to-microscale method to predict two-phase frictional pressure drops of annular flows. International journal of multiphase flow. 2009. Vol. 35.
Lockhart R. W., Martinelli R. C. Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem. eng. prog. 1949. Vol. 45.
Revellin R., Thome J. R. Adiabatic two-phase frictional pressure drops in microchannels. Experimental thermal and fluid science. 2007. Vol. 31.
Sun L., Mishima K. A. Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels. International journal of multiphase flow. 2009. Vol. 35.
Lee H. J., Lee S. Y. Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights. International journal of multiphase flow. 2001. Vol. 27.
Ribatski G., Wojtan L., Thome J. R. An analysis of experimental data and prediction methods for two-phase frictional pressure drop and flow boiling heat transfer in micro-scale channels. Experimental thermal and fluid science. 2006. Vol. 31 (1).
Lombardi C., Carsana C. G. A dimensionless pressure drop correlation for two-phase mixtures flowing up flow in vertical ducts covering wide parameter range. Heat and technology. 1992. Vol. 10 (1–2).
Tu X., Hrnjak P. S. Pressure drop and visualization of R134a two-phase flow in a rectangular microchannel. Part I // ASHRAE Transactions. 2003. Vol. 109.
Carbon dioxide flow boiling in a single microchannel. Part I: Pressure drops / M. Ducoulombier, S. Colasson, J. Bonjour, P. Haberschill. Experimental thermal and fluid science. 2011. Vol. 35 (4).
Flow-regime-based model for pressure drop predictions in microchannels / G. V. Niño, W. E. Jassim, P. S. Hrnjak, A. T. Newell. HVAC&R Research. 2006. Vol. 12(1).
Read the full article