1. Vorobev V.S., Ochkov V.F., Rykov V.A., Rykov S.V., Ustyuzhanin E.E., Pokholchenko V.A. Development of combined scaling models for liquid and gas densities at the saturation line: Structures and numerical data for SF6. J. Phys.: Conf. Ser. 2019. V.1147. P. 012017.
2. Rykov S.V., Kudryavtseva I.V., Rykov V.A., Ustyuzhanin E.E., Ochkov V.F. Analysis of the saturation line on the basis of Clapeyron–Clausius and Gibbs–Duhem equations. J. Phys.: Conf. Ser. 2019. V. 1147. P. 012017.
3. Apfelbaum E.M., Vorob’ev V.S. The Similarity Relations Set on the Basis of Symmetrization of the Liquid-Vapor Phase Diagram.J. Phys. Chem. B. 2015. V. 119. No 26. P. 8419-8424.
4. Apfelbaum E.M., Vorob’ev V.S. The Wide-Range Method to Construct the Entire Coexistence Liquid–Gas Curve and to Determine the Critical Parameters of Metals.J. Phys. Chem. B. 2015. V. 119. No 35. P. 11825-11832.
5. Shishakov V.V. Combined scaling models for engineering calculations of thermodynamic properties on the saturation curve. 2014. C.Sc. thesis (Moscow: National Research University Moscow Power Engineering Institute). 230 pp. (in Russian)
6. Rykov S.V., Kudryavtseva I.V., Rykov V.A. Method of calculating the phase equilibrium line of refrigerants from the triple to the critical point. Kholodilnaya Tekhnika. 2017. No 3. P. 26-30. (in Russian)
7. Ustyuzhanin E.E., Shishakov V.V., Abdulagatov I.M., Popov P.V., Rykov V.A., Frenkel M.L. Scaling models of thermodynamic properties on the coexistence curve: problems and some solutions. Russ. J. Phys. Chem. B. 2012. V. 6. No 8. P. 912-931.
8. Ochkov V.F., Rykov V.A., Rykov S.V., Ustyuzhanin E.E., Znamensky B.E. Extrapolation of IAPWS-IF97 data: The liquid and gas densities on the saturation line near the critical point of H2O. J. Phys.: Conf. Ser. 2018. V. 946. P. 012119.
9. Cailletet L., Mathias E. Recherches sur les densités des gaz liquéfiés et de leurs vapeurs saturées. J. Phys. Theor. Appl. 1886. V. 5(1). P. 549-564.
10. Goldstein R., Arola A. Liquid-vapor asymmetry at the critical point. Acc. Chem. Res. 1989. V. 22. P. 77-82.
11.Ma Sh. Modern Theory of Critical Phenomena. New York, NY: Roudedge. 1976.
12. Widom B., Rowlinson J. S. New Model for the Study of Liquid–Vapor Phase Transitions. J. Chem. Phys. 1970. V. 52. P. 1670.
13. Hemmer P.C., Stell G. Fluids with Several Phase Transitions. Phys. Rev. Lett. 1970. V. 24. P. 1284.
14. Rykov V.A. Analysis of regularities of change of substance thermodynamic properties in a wide range of state parameters including the critical point neighborhood and metastable region. 1988. C.Sc. thesis (Leningrad: Leningrad Institute of Refrigeration Industry). 275 pp. (in Russian)
15. Altunin V.V. Teplofizicheskiye svoystva dvuokisi ugleroda (Thermophysical properties of carbon dioxide). Moscow: Standards Publishing. 1975. 546 pp. (in Russian)
16. Kozlov A.D., Lysenkov V.F., Popov P.V., Rykov V.A. Unified non-analytical equation of state of freon 218. J. Eng. Phys. Thermophys. 1992. V. 62. P. 611-617. (in Russian)
17. Rykov S.V. A method for constructing an asymmetric scale equation of state in physical variables. 2009. C.Sc. thesis (Saint-Petersburg: St. Petersburg State University of Refrigeration and Food Engineering). 198 pp. (in Russian)
18. Poltoratskiy M.I. The method of constructing the fundamental equation of state and the thermodynamic tables of hexafluoropropane (R236ea). 2018. C.Sc. thesis (Saint-Petersburg: ITMO University). 165 pp. (in Russian)
19. Duschek W., Kleinrahm R., Wagner W. Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide. II. Saturated-liquid and saturated-vapor densities and vapor pressure along the entire coexistence curve. J. Chem. Thermodyn. 1990. V. 22. P. 841–864.
20. Kudryavtseva I.V., Kamotskii V.I., Rykov S.V., Rykov V.A. Calculation carbon dioxide line of phase equilibrium. Scientific Journal NRU ITMO. Processes and Food Production Equipment. 2013. No 4. P. 11. (in Russian)
21. Fisher M. E., OrkoulasG.The Yang-Yang anomaly in fluid criticality: experiment and scaling theoryюPhys. Rev. Lett.2000. V. 85. No 4-24. P. 696–699.
22. Anisimov M.A. Universality versus nonuniversality in asymmetric fluid criticality. Condens. Matter Phys.2013. V. 16. No 2. P. 23603: 1-10.
23. Stankus S.V., Khairulin R.A., Martynets V.G., Molorodov Yu.I. Density of Perfluorohexane near the Evaporation Critical Point. Vestnik NSU. Series: Physics. 2013. V. 8. No 1. P. 73-77. (in Russian)
24.PolikhronidiN.G., Abdulagatov I.M., Batyrova R.G., Stepanov G.V., Ustuzhanin E.E., WuJ.T. Experimental study of the thermodynamic properties of diethyl ether (DEE) at saturation. Int. J. Thermophys. 2011. V.32. P. 559-595.
25. UstjuzhaninE.E., Ochkov V.F., Znamensky V.E., Shishakov V.V., Znamensky V.E., Rykov S.V. Investigation of gas and liquid densities on the saturation line: some scaling models and numerical data on H2O example. J. Phys.: Conf. Ser. 2017. V. 891. P. 012346.
26. Rykov S.V., Kudryavtseva I.V., Rykov V.A. Analysis of the phase equilibrium line developed on the basis of the Clapeyron-Clausius equation and various models of average diameter. Journal of International Academy of Refrigeration. 2018. No 4. P. 28-34.(in Russian)
27. Gruzdev V.A., Khairulin R.A., Komarov S.G., Stankus S.V. Thermodynamic Properties of HFC-236ea. Int. J. Thermophys. 2008. V. 29. P. 546-556.
28. Defibaugh D.R., Gillis K.A., Moldover M.R., Schmidt J.W., Weber L.A. Thermodynamic properties of CF3-CF-CHF2, 1,1,1,2,3,3-hexafluoropropane. Fluid Phase Equilib. 1996. V. 122. No 1-2. P. 131–155.
29. Zhang H., Sato H., Watanabe K. Vapor Pressure of 1,1,1,2,3,3-hexafluorpropane (R-236ea) from 300 to 410 K. J. Chem. Eng. Data. 1995. V. 20. P. 1281–1284.
30. Di Nicola G., Giuliani G. Vapor Pressure and PVT Measurements for 1,1,1,2,3,3-hexafluorpropane (R-236ea). J. Chem. Eng. Data. 2000. V. 45. P. 1075–1079.
31. Bobbo S., Fedele L., Scattolini M., Camporese R. Vapor+Liquid Equilibrium Measurements and Correlation of the Binary Refrigerant Mixtures Difluoromethane (HFC-32)+1,1,1,2,3,3-Hexafluoropropane (HFC-236ea) and Pentafluoroethane (HFC-125)+1,1,1,2,3,3-Hexafluoropropane(HFC-236ea) at 288.6, 303.2, and 318.2. Int. J. Thermophys. 2000. V. 21. P. 781–790.
32. Bobbo S., Fedele L., Camporese R., Stryjek R. Vapor-liquid equilibrium for the three binary systems 1,1,1,2,3,3-hexafluoropropane with dimethyl ether or propane, and 1,1,1,3,3,3-hexafluoropropane with dimethyl ether. Fluid Phase Equilib. 2000. V. 174. P. 3–12.
33. Lemmon E.W., Huber M.L, McLinden M.O Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0. National Institute of Standards and Technology, 2010.
34. Aoyama H., Kishizawa G., Sato H., Watanabe K. Liquid Coexistence Curves in the Critical Region and the Critical Temperatures and Densities of 1,1,1,2-Tetrafluoroethane (R-134a), 1,1,1-Trifluoroethane (R-143a), and 1,1,1,2,3,3-Hexafluoropropane (R-236ea). J. Chem. Eng. Data. 1996. V. 41. No. 5. P. 1046–1051.
35. Gruzdev V.A., Komarov S.G. Experimental study of pressure and density of saturated and superheated vapor of refrigerant R-236ea from 20 to 150°С. Thermophys. Aeromech. 2006. V. 13. No 3. P. 411-418.(in Russian)