1. Asadi Javad etc. Thermo-economic analysis and multi-objective optimization of absorption cooling system driven by various solar collectors. Energy Conversion and Management. 173 (2018) 715-727. https://doi.org/10.1016/j.enconman.2018.08.013
2. Nanda Arun Kumar, Panigrahi C.K. A state of the art review of solar passive building system for heating or cooling purpose. Front. Energy. 2016. 10(3): 347-354. DOI: 10.1007/s11708-016-0403-0
3. Commissariat de l'Energie Atomique et aux Energies Alternatives (CEA) – Memento sur l’énergie-2018, Gif-sur-Yvette cedex- France.
4. Liming Liu and al. Energetic, economic and environmental study of cooling capacity for absorption subsystem in solar absorption-subcooled compression hybrid cooling system based on data of entire working period. Energy Conversion and Management. 2018. Vol. 167. P. 165-175, https://doi.org/10.1016/j.enconman.2018.04.102
5. Abdul Ghafoor & Anjum Munir. Worldwide overview of solar thermal cooling technologies. Renewable and Sustainable Energy Reviews. 2015. Vol. 43. P.763-774. http://dx.doi.org/10.1016/j.rser.2014.11.073
6. British Petroleum. Statistical Review of World Energy: les chiffres clés de l’énergie dans le monde, https://www.connaissancedesenergies.org/bp-statistical-review-world-energy-2018-les-chiffres-cles-de-lenergie-dans-le-monde-180614
7. Noel Jabbour. Intégration des systèmes à absorption solaire de petites puissances aux bâtiments-approche multifonction solaire: chauffage, ECS et rafraîchissement, HAL Id: tel-00708518 https://tel.archives-ouvertes.fr/tel-00708518, Lyon 2011. http://theses.insa-lyon.fr/publication/2011ISAL0085/these.pdf
8. Kim D.S., Infante Ferreira C.A. Solar refrigeration options – a state-of-the-art review. International Journal of Refrigeration. 2008. Vol. 31. Iss. 1. P. 3-15. doi:10.1016/j.ijrefrig.2007.07.011
9. Ali Shirazi and al. Solar-powered absorption chillers: A comprehensive and critical review. Energy Conversion and Management. 2018. Vol. 171. P. 59-81. https://doi.org/10.1016/j.enconman.2018.05.091
10. Bin Zhao and al. Performance evaluation of daytime radiative cooling under different clear sky conditions. Applied Thermal Engineering. 2019. Vol. 155. P. 660-666.
11. Дженблат C.C., Волкова О.В. Основы и перспективы применения пассивного радиационного охлаждения // Xолодильная техника. 2019. № 9. c. 36-44. [Junblat C.C., Volkova O.V. Basics and prospects of application of passive radiative cooling. Kholodil'naya Tekhnika. 2019. No 9. p. 36-44. (in Russian)]
12. Bin Zhao and al. A review of fundamentals, materials, applications, and prospects. Applied Energy. 2019. Vol. 236. p. 489-513. https://doi.org/10.1016/j.apenergy.2018.12.018
13. Xing Lu, PengXu & al. Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art.Renewable and Sustainable Energy Reviews.November 2016, Vol. 65, P. 1079-1097. http://dx.doi.org/10.1016/j.rser.2016.07.058
14. Bathgate S.N., Bosi S.G. A robust convection cover material for selective radiative cooling applications. Solar Energy Materials & Solar Cells. 2011. Vol. 95, Iss. 10. P. 2778-2785.doi: 10.1016/j.solmat.2011.05.027
15. Ahmad M.I., Jarimi H., Riffat S. Introduction: Overview of Buildings and Passive Cooling Technique. In: Nocturnal Cooling Technology for Building Applications. Springer Briefs in Applied Sciences and Technology. 2019. https://doi.org/10.1007/978-981-13-5835-7
16. Ron Zevenhoven, Martin Fält. Radiative cooling through the atmospheric window: A third, less intrusive geoengineering approach. Energy. 2018. vol. 152. P. 27-33. https://doi.org/10.1016/j.energy.2018.03.084
17. Zeyghami M. et al., A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling. Solar Energy Materials and Solar Cells. 2018. Vol. 178. P. 115-128. https://doi.org/10.1016/j.solmat.2018.01.015
18. Mingke Hu and al. Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system. Applied Energy. 2016. Vol. 179. P. 899-908.
http://dx.doi.org/10.1016/j.apenergy.2016.07.066
19. Yijia Huang and al., Broadband metamaterial as an ‘‘invisible’’ radiative cooling coat, Optics Communications 407 (2018) 204–207, http://dx.doi.org/10.1016/j.opt.com.2017.09.036, 0030-4018/© 2017 Elsevier B.V. All rights reserved.
20. Jianshu Fan and al. Yttria-stabilized zirconia coating for passive daytime radiative cooling in humid environment. Applied Thermal Engineering. 2020. Vol. 165. 114585.
21. Cunha N.F. Multilayer passive radiative selective cooling coating based on Al/SiO2/SiNx/SiO2/TiO2/SiO2 prepared by dc magnetron sputtering. Thin Solid Films. 2020. Vol. 694. 137736. https://doi.org/10.1016/j.tsf.2019.137736
22. Roxana Family, M. Pinar Mengüç. Materials for Radiative Cooling: A Review. Procedia Environmental Sciences. 2017. Vol. 38. 752-759. doi: 10.1016/j.proenv.2017.03.158
23. Hanif M. and al. Potential energy savings by radiative cooling system for a building in tropical climate. Renewable and Sustainable Energy Reviews. 2014. Vol. 32. P. 642-650. http://dx.doi.org/10.1016/j.rser.2014.01.053
24. Ablimit Aili and al. A kW-scale, 24-hour continuously operational, radiative sky cooling system: Experimental demonstration and predictive modeling. Energy Conversion and Management. 2019. Vol. 186. 586-596. https://doi.org/10.1016/j.enconman.2019.03.006
25. Amir A., R. van Hout. A transient model for optimizing a hybrid nocturnal sky radiation cooling system. Renewable Energy. 2019. Vol. 132. P. 370-380. https://doi.org/10.1016/j.renene.2018.07.114
26. Nwaji G.N. and al. Hybrid solar water heating/nocturnal radiation cooling system I: A review of the progress, prospects and challenges. Energy & Buildings. 2019. Vol. 198. P. 412-430. https://doi.org/10.1016/j.enbuild.2019.06.017
27. Balázs Bokor and al. Nocturnal radiation: new opportunity in building cooling, Energy Procedia. 2017. Vol. 112. P. 118-125. doi: 10.1016/j.egypro.2017.03.1072
28. Yi Man and al. A Novel nocturnal cooling radiator used for supplemental heat sink of active cooling system. Procedia Engineering. 2015. Vol. 121. P. 300-308. doi: 10.1016/j.proeng.2015.08.1072
29. John Hollick. Nocturnal radiation cooling tests. Energy Procedia. 2012. Vol. 30. P. 930-936. doi: 10.1016/j.egypro.2012.11.105
30. Ghassem Heidarinejad and al. Investigation of a hybrid system of nocturnal radiative cooling and direct evaporative cooling. Building and Environment. 2010. Vol. 45. P. 1521-1528. doi:10.1016/j.buildenv.2010.01.003
31. Moien Farmahini-Farahani and Ghassem Heidarinejad. Increasing effectiveness of evaporative cooling by pre-cooling using nocturnally stored water. Applied Thermal Engineering. 2012. Vol. 38. P. 117-123. doi:10.1016/j.applthermaleng.2012.01.023
32. Muhammed Ali Kecebas and al. Passive radiative cooling design with broadband optical thin-film filters. Journal of Quantitative Spectroscopy & Radiative Transfer. 2017. Vol. 198. P. 179-186. http://dx.doi.org/10.1016/j.jqsrt.2017.03.046
33. Na Li and al. Selective spectral optical properties and structure of aluminum phosphate for daytime passive radiative cooling application. Solar Energy Materials and Solar Cells. 2019. Vol. 194. 103-110. https://doi.org/10.1016/j.solmat.2019.01.036
34. Elvire Katramiz and al. Daytime radiative cooling: To what extent it enhances office cooling system performance in comparison to night cooling in semi-arid climate? Journal of Building Engineering. 2020. Vol. 28. 101020. https://doi.org/10.1016/j.jobe.2019.101020
35. Dengwu Liua and al. A thermally stable cooler for efficient passive radiative cooling throughout the day. Optical Materials. 2019. Vol. 92. P. 330-334. https://doi.org/10.1016/j.optmat.2019.04.061
36. Nwaji G.N. et al. Investigation of a hybrid solar collector/nocturnal radiator for water heating/cooling in selected Nigerian cities. Renewable Energy. 2020. Vol. 145. P. 2561-2574. https://doi.org/10.1016/j.renene.2019.07.144
37. Tsoy A.P., Granovsky A.S., Tsoy D.A., Baranenko A.V. Climate influence on the operation on refrigeration system using the effective radiation into space. KholodilnaiaTekhnika. 2015. No1, p. 43-46 (inRussian)
38. Tsoy A.P., Granovskiy A.S., Tsoy D.A., Baranenko A.V. Simulation of radiation cooling system for air conditioning. Vestnik Mezhdunarodnoi akademii kholoda. 2019. No 3. p.3-14. (inRussian)