1. Sustainable solutions in Energy & Environment. Thermax. [Электронный ресурс]: https://www.thermaxglobal.com/(дата обращения: 11.12.2022)
2. Solar Cooling. 34th Informatory Note on Refrigeration Technologies, April 2017. The International Institute of Refrigeration (IIR). [Электронныйресурс]: https://www.iifiir.org.
3. Qasem N.A.A., Lawal D.U., Aljundi I.H., Abdallah A.M., Panchal H. Novel integration of a parallel-multistage direct contact membrane distillation plant with a double-effect absorption refrigeration system. Applied Energy. 2022. Vol. 323. P. 119572. DOI: 10.1016/j.apenergy.2022.119572
4. Seyed Mahmoudi S.M., Akbari A.D., Rosen M.A. A novel combination of absorption heat transformer and refrigeration for cogenerating cooling and distilled water: Thermoeconomic optimization. Renewable Energy. 2022. Vol. 194. P. 978-996. DOI: 10.1016/j.renene.2022.05.142
5. Mei S., Lu X., Zhu Y., Wang S. Thermodynamic assessment of a system configuration strategy for a cogeneration system combining SOFC, thermoelectric generator, and absorption heat pump. Applied Energy. 2021. Vol. 302. P. 117573. DOI: 10.1016/j.apenergy.2021.117573
6.Shuangliang eco-energy. [Электронныйресурс]: http://sl-ecoenergy.com/ (датаобращения: 11.12.2022)
7. EBARA Corporation.[Электронный ресурс]: https://www.ebara.co.jp/ (дата обращения: 11.12.2022)
8. Chen J.F., Dai Y.J., Wang H.B., Wang R.Z. Experimental investigation on a novel air-cooled single effect LiBr-H2O absorption chiller with adiabatic flash evaporator and adiabatic absorber for residential application. Solar Energy. 2018. Vol. 159. P. 579-587. DOI: 10.1016/j.solener.2017.11.029
9. Al-Yasiri Q., Szabo M., Arici M. A review on solar-powered cooling and air-conditioning systems for building applications. Energy Reports. 2022. Vol. 8. P. 2888-2907. DOI: 10.1016/j.egyr.2022.01.172
10. Li Y., Fu L., Zhang S., Jiang Y., Zhao X. A new type of district heating method with co-generation based on absorption heat exchange (co-ah cycle). Energy Conversion and Management. 2011. Vol. 52. P. 1200-1207. DOI: 10.1016/j.enconman.2010.09.015
11. Li Y., Fu L., Zhang S., Zhao X. A new type of district heating system based on distributed absorption heat pumps. Energy. 2011. Vol. 36. P. 4570-4576. DOI: 10.1016/j.energy.2011.03.019
12. Sun F., Fu L., Zhang S., Sun J. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China. Applied Thermal Engineering. 2012. Vol. 37. P. 136-144. DOI: 10.1016/j.applthermaleng.2011.11.007
13. Zhao X., Fu L., Wang X., Sun T., Wang J., Zhang S. Flue gas recovery system for natural gas combined heat and power plant with distributed peak-shaving heat pumps. Applied Thermal Engineering. 2017. Vol. 111. P. 599-607. DOI: 10.1016/j.applthermaleng.2016.09.130
14. Lin X., Zuo L., Yin L., Su W., Ou S. An idea to efficiently recover the waste heat of Data Centers by constructing an integrated system with carbon dioxide heat pump, mechanical subcooling cycle and lithium bromide-water absorption refrigeration cycle. Energy Conversion and Management. 2022. Vol. 256. P. 115398. DOI: 10.1016/j.enconman.2022.115398
15. Salhi K., Korichi M., Ramadan K.M. Thermodynamic and thermo-economic analysis of compression-absorption cascade refrigeration system using low-GWP HFO refrigerant powered by geothermal energy. International Journal of Refrigeration. 2018. Vol. 94. P. 214-229. DOI: 10.1016/j.ijrefrig.2018.03.017.
16. Rodrнguez-Toscano A., Amaris C., Sagastume-Gutiґerrez A., Bourouis M. Technical, environmental, and economic evaluation of a solar/gasdriven absorption chiller for shopping malls in the Caribbean region of Colombia. Case Studies in Thermal Engineering. 2022. Vol. 30. P. 101743. DOI: 10.1016/j.csite.2021.101743.
17. Lubis A., Jeong J., Saito K., Giannetti N., Yabase H., Alhamid M.I. Nasruddin Solar-assisted single-double-effect absorption chiller for use in Asian tropical climates. Renewable Energy. 2016. Vol. 99. P. 825-835. DOI: 10.1016/j.renene.2016.07.055.
18. Hu T., Kwan T.H., Pei G. An all-day cooling system that combines solar absorption chiller and radiative cooling. Renewable Energy. 2022. Vol. 186. P. 831-844. DOI: 10.1016/j.renene.2022.01.058.
19. Alrobaian A.A. Energy, exergy, economy, and environmental (4E) analysis of a multi-generation system composed of solar-assisted Brayton cycle, Kalina cycle, and absorption chiller. Applied Thermal Engineering. 2022. Vol. 204. P. 117988. DOI: 10.1016/j.applthermaleng.2021.117988.
20. Aliane A., Abboudi S., Seladji C., Guendouz B. An illustrated review on solar absorption cooling experimental studies. Renewable and Sustainable Energy Reviews. 2016. Vol. 65. P. 443-458. DOI: 10.1016/j.rser.2016.07.012.
21. Li M., Xu C., Hassanien R.H.E., Xu Y., Zhuang B. Experimental investigation on the performance of a solar powered lithium bromide-water absorption cooling system. International Journal of Refrigeration. 2016. Vol. 71. P. 46-59. DOI: 10.1016/j.ijrefrig.2016.07.023.
22. Aguilar-Jimenez J.A., Velazquez-Limon N., Lopez-Zavala R., Gonzalez-Uribe L.A., Islas S., Gonzalez E., Ramirez L., Beltran R.Optimum operational strategies for a solar absorption cooling system in an isolated school of Mexico. International Journal of Refrigeration. 2020. Vol. 112. P. 1-13. DOI: 10.1016/j.ijrefrig.2019.12.010.
23. Zhang N., Wang Z., Lior N., Han W. Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system. Applied Energy. 2018. Vol. 219. P. 179-186. DOI: 10.1016/j.apenergy.2018.03.050.
24. Xu Z.Y., Wang R.Z.Absorption refrigeration cycles: Categorized based on the cycle construction. International Journal of Refrigeration. 2016. Vol. 62. P. 114-136. DOI: 10.1016/j.ijrefrig.2015.10.007.
25. Wang J., Zheng D. Performance of one and a half-effect absorption cooling cycle of H2O/LiBr system. Energy Conversion and Management. 2009. Vol. 50. P. 3087-3095. https://doi:10.1016/j.enconman.2009.08.004.
26. Hu T., Xie X., Jiang Y. Simulation research on a variable-lift absorption cycle and its application in waste heat recovery of combined heat and power system. Energy. 2017. Vol. 140. P. 912-921. DOI: 10.1016/j.energy.2017.09.002.
27. Abid M., Khan M.S., Ratlamwala T.A.H., Ali H., Cheok Q. Thermodynamic analysis and comparison of different absorption cycles driven by evacuated tube solar collector utilizing hybrid nanofluids. Energy Conversion and Management. 2021. Vol. 246. P. 114673.DOI: 10.1016/j.enconman.2021.114673.
28. Kaushika S.C., Arorab A. Energy and exergy analysis of single effect and series flow double effect water-lithium bromide absorption refrigeration systems. International Journal of Refrigeration. 2009. Vol. 32. P. 1247-1258.
29. Lubis A., Jeong J., Giannetti N., Yamaguchi S., Saito K., Yabase H., Alhamid M.I. Nasruddin. Operation performance enhancement of single-double-effect absorption chiller. Applied Energy. 2018. Vol. 219. P. 299-311. DOI: 10.1016/j.apenergy.2018.03.046.
30. She X., Yin Y., Xu M., Zhang X. A novel low-grade heat-driven absorption refrigeration system with LiCl-H2O and LiBr-H2O working pairs.International Journal of Refrigeration. 2015. Vol. 58. P.219-234.DOI: 10.1016/j.ijrefrig.2015.06.016.
31. Medjo Nouadje B.A., Ngouateu Wouagfack P.A., Tchinda R. Finite-time thermodynamics optimization of an irreversible parallel flow double-effect absorption refrigerator. International Journal of Refrigeration. 2016. Vol. 67. P. 433-444. DOI: 10.1016/j.ijrefrig.2016.02.014.
32. Mehregan M., Golmohammadi H., Shojaei A.F. Performance analysis and optimization of new double effect lithium bromide-water absorption chiller with series and parallel flows. International Journal of Refrigeration. 2019. Vol. 97. P. 73-87. DOI: 10.1016/j.ijrefrig.2018.08.011.
33. Calle A., Roca L., Bonilla J., Palenzuela P. Dynamic modeling and simulation of a double-effect absorption heat pump. International Journal of Refrigeration. 2016. Vol. 72. P. 171-191.DOI: 10.1016/J.IJREFRIG.2016.07.018.
34. Camara S., Sulin A.B., Malinina O.S. Energy and economic analysis of a solar cooling system driven by a double-acting collector. Journal of International Academy of Refrigeration. 2022. No 4. p. DOI: 10.17586/1606-4313-2022-21-4-3-14 (in Russian)
35. Malinina O.S., Baranenko A.V., Lyadova E.E. Efficiency of the thermodynamic cycle of absorption lithium bromide refrigerating unit with two-stage absorption and three-stage generation of the refrigerant vapor with bound mass flow. Journal of International Academy of Refrigeration. 2020. No 4. p. 12–19. DOI: 10.17586/1606‑4313‑2020‑19‑4-12-19 (in Russian)
36. Mereutsa E.V., Sukhikh А.А. Energy efficiency analysis of incorporating heat pumps and solar collectors in the composition of the absorption refrigerating machines in a centralized air-conditioning systems. Journal of International Academy of Refrigeration. 2017. No 2. p. 43-49 (in Russian)
37. Baranenko A.V., Posylin D.N., Malinina O.S. Performance of single-stage absorption lithium bromide refrigerating machine at poling points below 0 оС. Journal of International Academy of Refrigeration. 2017. No 4. p. 52-58 (in Russian)
38. Dzino A.A., Malinina O.S. The influence of heat source temperature on the energy efficiency of absorption bromine lithium step down thermal transformer. Journal of International Academy of Refrigeration. 2016. No 4. p. 35-39. (in Russian)
39. Timofeevsky L.S., Malinina O.S. Comparison of cycles in LiBr absorption refrigerators at various temperatures of external sources. Journal of International Academy of Refrigeration. 2011. No. 3. pp. 43-45. (in Russian)
40. Stepanov K.I., Mukhin D.G., Volkova O.V., Baranenko A.V. Analysis of COP thermodynamic cycle LBAC with two-level absorption when obtaining negative temperatures of cooling. Journal of International Academy of Refrigeration. 2016. no1. p. 86-92. (in Russian)
41. Malinina O.S., Baranenko A.V. Lithium bromide absorption refrigerating machines charged with helium for air conditioning and condensation. Journal of International Academy of Refrigeration. 2015. no4. p. 38-43.(in Russian)
42. Baranenko A.V., Timofeevsky L.S., Dolotov A.G., Popov A.V. Absorption heat converters. St. Petersburg: SPbGUNiPT, 2005. 338 p (in Russian)