1. Funke M., Kleinrahm R., Wagner W. Measurement and correlation of the (p, ρ, T) relation of ethane II. Saturated-liquid and saturated-vapour densities and vapour pressures along the entire coexistence curve. J. Chem. Thermodynamics. 2002. V. 34. P. 2017-2039.
2. Ma Sh. Modern Theory of Critical Phenomena. New York, NY: Roudedge, 2018.
3. Bezverkhii P.P., Martynets V.G., Kaplun A.B., Meshalkin A.B. The Thermodynamic Properties of CO2 up to 200 MPa Including the Critical Region, Calculated by a New Combined Equation of State with Few Parameters.International Journal of Thermophysics. 2020. V. 41, No 2. P. 2-20.
4. Rykov S.V., Kudryavtseva I.V., Rykov V.A. Method of calculation of the phase equilibrium line for refrigerants from triple to critical point. Kholod. Tekh.2017. No 3. P. 26-30. (in Russian)
5. Ustyuzhanin E.E., Ochkov V.F., Rykov S.V., Rykov V.A., Znamensky B.E., Tun A.T.Y. Comparative study of scaling models related to thermodynamic properties of H2O in the critical region. J. Phys.: Conf. Ser. 2019. V. 1385. P. 012006.
6. Vorob’yev V.S., Rykov V.A., Ustjuzhanin E.E., Shishakov V.V., Popov P.V., Rykov S.V. Comparison of the scaling models for substance densities along saturation line. J. Phys.: Conf. Ser. 2016. V. 774. P. 012017.
7. Ustyuzhanin E.E., Ochkov V.F., Rykov V.A., Rykov S.V. Investigation of the gas density, the liquid density andthe gravitational effect in the critical region of C6F6. J. Phys.: Conf. Ser. 2020. V. 1556. P. 012057.
8. Landau L.D., Lifshitz E.M. Statistical Physics. Part 1 (Course of Theoretical Physics. vol 5). Oxford: Pergamon. 1980.
9. Rykov S.V., Kudryavtseva I.V., Rykov V.A., Ustyuzhanin E.E., Ochkov V.F. Analysis of the saturation line on thebasis of Clapeyron-Clausius and Gibbs-Duhem equations. J. Phys.: Conf. Ser. 2019. V. 1147. P. 012017.
10. Kozlov A.D., Lysenkov V.F., Popov P.V., Rykov V.A. Unique nonanalytic equation of state of the refrigerantR218. Journal of Engineering Physics and Thermophysics. 1992. V. 62. No 6. P. 611-617.
11. Kudryavtseva I.V., Rykov V.A., Rykov S.V., Ustyuzhanin E.E. A model system of the liquid density, the gas density and thepressure on the saturation line of SF6. J. Phys.: Conf. Ser. 2019. V. 1385. P. 012010.
12. Rykov S.V., Kudryavtseva I.V., Rykov V.A., Sverdlov A.V., Nurysheva M. Analysis of various models of the average diameter of phase equilibrium line R236ea. Journal of International Academy of Refrigeration.2019. No 3. P. 87-93. (in Russian)
13. Fisher M.E., Orkoulas G. The Yang-Yang Anomalyin Fluid Criticality: Experiment and Scaling Theory. Physical Review Letters. 2000. V. 85, No 24. P. 696-699.
14. Orkoulas G., Fisher M.E., Panagiotopoulos A.Z. Precise simulation of criticality in asymmetric fluids. Physical Review E. 2001. V. 63. P. 051507.
15. Kozlov A.D., Mamonov Yu.V., Rogovin M.D., Rybakov S.I., Stepanov S.A., Sychev V.V. Standard reference data tables. Ethane liquid and gaseous. Thermodynamic properties, coefficients of dynamic viscosity and thermal conductivity at temperatures of 91...625 K and pressures of 0.1...70 MPa. Moscow: Standartinform, 2008. 36 p. (in Russian)
16. Bücker D., Wagner W. A Reference Equation of State for the Thermodynamic Properties of Ethane for Temperatures fromthe Melting Line to 675 K and Pressures up to 900 MPa.J. Phys. Chem. Ref. Data. 2006. V. 35, No 1. P. 205-266.
17. Brown T.S., Kidnay A.J., Sloan E.D. Vapor-liquid equilibria in the carbon dioxide-ethane system. Fluid Phase Equilibria. 1988. V. 40. P. 169-184.
18. Goodwin R.D., Roder H.M., Straty, G.C., Thermodynamic properties of ethane, from 90 to 600 K at pressures to 700 bar. Nat. Bur. Stand. (U.S.) Tech. Note, 1976. No 684, p. 774.
19. Barciay D.A., Flebbe J.L., Manley D.B. Relative Volatilities of the Ethane-Ethylene System from Total Pressure Measurements. J. Chem. Eng. Data. 1982. V. 27. P. 135–142.
20. Luo C.C., Miller R.C. Densitiesand dielectric constants for some LPG components and mixtures at cryogenic and standard temperatures. Cryogenics. 1981. V. 21. P. 85–93.
21. Mares R., Profous O., Sifner O. New Equation for Vapor Pressures of Difluoromethane (HFC-32). International Journal of Thermophysics. 1999. V. 20, No 3. P. 933-942.
22. Vorob’ev V.S., Ustyuzhanin E.E., Ochkov V.F., Shishakov V.V., Tun A.T.R., Rykov V.A., Rykov S.V.Study of the Phase Boundary for C6F6 and SF6 under Microgravity. High Temp. 2020. V. 58, No 3. P. 333-341. (in Russian)
23. Garrabos Y.,Lecoutre C.,Marre S.,Beysens D., Hahn I. Liquid-vapor rectilinear diameter revisited. Physical Review E. 201. V. 97. Pp. 020101(R).
24. Wang L., Zhao W., Wu L., Li L., Caia J. Improved renormalization group theory for critical asymmetry of fluids. Journal of Chemical Physics. 2013. V. 139. P. 124103.
25. Cerdeirina C., Anisimov M., Sengers J. The nature of singular coexistence-curve diameters of liquid-liquid phase equilibria. Chem. Phys. Lett.2006. V. 424. Р. 414-419.
26. Polikhronidi N.G., Abdulagatov I.M., Batyrova R.G., Stepanov G.V., Ustuzhanin E.E., Wu J.T. Experimental study of the thermodynamic properties of diethyl ether (DEE) at saturation. Int. J. Thermophys. 2011. V. 32. P. 559-595.
27. Rykov S.V., Kudriavtseva I.V., Sverdlov A.V., Rykov V.A. Calculation method of R1234yf phase equilibrium curve within temperature range from 122.6 K to 367.85 K. AIP Conference Proceedings. 2020. V. 2285. P. 030070.
28. Anisimov M.A. Universality versus nonuniversality in asymmetric fluid criticality. Condensed Matter Physics. 2013. V. 16, No 2. P. 23603.
29. Anisimov M.A., Wang J.T. Nature of asymmetry in fluid criticality. Phys. Rev. Lett. 2006. V. 97. P. 25703.
30. Bertrand C.E., Nicoll J.F., Anisimov M.A. Comparison of complete scaling and a field-theoretic treatment of asymmetric fluid criticality. Phys. Rev. E. 2012. V. 85. P. 031131.
31. Rykov S.V., Rykov V.A., Kudryavtseva I.V., Ustyuzhanin E.E., Sverdlov A.V. Fundamental equation of state of argon, satisfying the scaling hypothesis and working in the region of high temperatures and pressures. Mathematica Montisnigri. 2020. V. 47. P. 124–136.
32.Kudryavtseva I.V., Rykov V.A., Rykov S.V. The method for constructing the fundamental equation of state for SF6. J. Phys.: Conf. Ser.2019. V.1385. P. 012009.
33. Rykov S.V., Kudryavtseva I.V., Rykov V.A., Sverdlov A.V.Nonparametric equation of state on the basis of the phenomenological theory of a critical point with the use of similarity theory. Journal of International Academy of Refrigeration.2020. No 2. P. 79-85. (in Russian)
34. Rykov S.V., Sverdlov A.V., Rykov V.A., Kudryavtseva I.V., Ustyuzhanin E.E.A method for constructing the equation of state of a liquid and gas based on the Migdal phenomenological theory and the Benedek hypothesis. Journal of International Academy of Refrigeration.2020. No 3. P. 83-90. (in Russian)
35. Migdal A.A. Equation of State Near Critical Point. Zh. Eksp. Teor. Fiz.1972. V. 62. No4. P.1559–1573. (inRussian)(in Russian)