1. BezverkhiiP.P., Martynets V.G., Kaplun A.B., Meshalkin A.B. The Thermodynamic Properties of CO2 up to 200 MPa Including the Critical Region, Calculated by a New Combined Equation of State with Few Parameters. Int. J. Thermophys. 2020. V. 41. P. 1-20.
2. BezverkhiiP.P., Martynets V.G., Kaplun A.B., Meshalkin A.B. Calculation of thermodynamic properties of SF6 including the critical region. Combined thermal equation of state with a small number of parameters. High Temp. 2017. V. 55. P. 693-701.
3. Rykov V.A., KudryavtsevaI.V., Rykov S.V., Ustyuzhanin E.E. A new variant of a scaling hypothesis and a fundamental equation of state based on it // J. Phys.: Conf. Ser. 2018. V. 946. P. 012118.
4. Kolobaev V.A., PopovP.V., Kozlov A.D., Rykov S.V., Kudryavtseva I.V., Rykov V.A., Sverdlov A.V., Ustyuzhanin E.E.Methodology for constructing the equationof state and thermodynamic tables for a new generation refrigerant. Measurement Techniques. 2021. V. 64. P. 109-118.
5. Agayan V. A., Anisimov M. A., Sengers J. V. Crossover parametric equation of state for Ising-like systems. Phys. Rev. E. 2001. 64. 026125-1.
6. Kiselev S.B., ElyJ.F. Generalized crossover description of the thermodynamic and transport properties in pure fluids II. Revision and modifications. Fluid Phase Equilib. 2007. V. 252. P. 57–65.
7. Rykov V.A.On the hypothesis of a "pseudo-spinodal" curve. Russ. J. Phys.Chem. A. 1986. V. 60. P. 787-793. (in Russian)
8. Rykov S.V., Kudryavtseva I.V.,Rykov V.A. Physical substantiation of the pseudocritical points method. Sci. Techn. Volga Reg. Bull. 2014. No 2. P. 44-47. (in Russian)
9. Benedek G.B., Inpolarisationmatieetpayonnement, livredeJubileenl’honneurduproffesorA. Kastler(PressesUniversitairesdeParis, Paris). 1968. P. 71.
10. Migdal A.A. Equation of state near the critical point. Sov. Phys. JETP. 1972. V. 35. P. 816. (in Russian)
11. Kozlov A.D., Lysenkov V.F., Popov P.V., Rykov V.A. Unique nonanalytic equation of state of the refrigerant R218. J. Eng. Phys. Thermophys. 1992. V. 62. P 611-617.
12. Lysenkov V.F., Kozlov A.D., Popov P.V., Yakovleva M.V. Nonanalytical unified equation of state of freezant R23. J. Eng. Phys. Thermophys.1994. vol. 66. No 3. p. 286-294.
13. KudryavtsevaI.V., Rykov V.A., Rykov S.V. The method for constructing the fundamental equation of state for SF6// J. Phys.: Conf. Ser. 2019.V. 1385. P. 012009.
14. Rykov S. V., Sverdlov A. V., Rykov V. A., Kudryavtseva I. V., Ustyuzhanin E. E. A method for constructing the equation of state of a liquid and gas based on the Migdal phenomenological theory and the Benedek hypothesis. Journal of International Academy of Refrigeration. 2020. No 3. p. 83-90. (in Russian)
15. Rykov V.A., Rykov S.V., Kudryavtseva I.V., Sverdlov A.V. Method of constructing a fundamental equation of state based on a scaling hypothesis. J. Phys.: Conf. Ser. 2017. 891. P. 012334.
16. Rykov V.A., Rykov S.V., Sverdlov A.V. Fundamental equation of state for R1234yf. J. Phys.: Conf. Ser. 2019. V. 1385. P. 012013.
17. Rykov S.V., Kudryavtseva I.V., Rykov V.A., Ustyuzhanin E.E., Popov P.V., Poltoratskii M.I. 2017. Metodika raschetnogo opredeleniya termodinamicheskikh svoystv argona v diapazone temperatur (86,77…1000) K i davleniy (0,1…500) MPa, vklyuchaya kriticheskuyu oblast (Method for calculating the thermodynamic properties of argon in the temperature range (86.77 ... 1000) K and pressures (0.1 ... 500) MPa, including the critical region) Moscow: Standartinform. (in Russian)
18. Ma Sh. Modern theory of critical phenomena. Moscow: Mir. 1980. 298 p. (in Russian).
19. Zhou Z., Cai J., HuY. A self-consistent renormalisation group theory for critical asymmetry of one-component fluids. Molecular Physics. 2022.V. 120. P. e1987541.
20. Rykov S.V. Method for constructing an asymmetric scaling equation of state in physical variables. Sc. thesis, St. Petersburg State University of Refrigeration and Food Engineering, Saint-Petersburg, 2009.(in Russian)
21. Rykov S.V., Kudryavtseva I.V., RykovV.A.Method for constructing fundamental equationof state that satisfies the scaling theory and applicable for substances insufficiently explored in the critical point vicinity. J. Phys.: Conf. Ser.2019. V. 1385. P. 012014.
22. Klimeck J., Kleinrahm R., Wagner W. An accurate single-sinker densimeter and measurementsof the (p, r, T) relation of argon and nitrogen in the temperature range from (235 to 520) K at pressures up to 30 MPa. J. Chem. Thermodyn. 1998. V. 30. P. 1571-1588.
23. Robertson S.L., Babb S.E., Scott G.J. Isotherms of Argon to 10 000 bars and 400°C. J. Chem. Phys. 1969. V. 50. P. 2160--2166.
24. MichelsA., Wijker Hub., Wijker H.K. Isotherms of argon between 0°C and 150°C and pressures up to 2900 atmospheres. Physica. 1949. V. 15. P. 627-633.
25. Anisimov M.A., Koval'chuk B.A., Rabinovich V.A., Smirnov V.A. Rezul'taty eksperimental'nogo issledovaniya teployemkosti Sv argona v odnofaznoy i dvukhfaznoy oblastyakh (Results of an experimental study of the heat capacity Cv of argon in single-phase and two-phase regions). Teplofizicheskiye svoystva veshchestv i materialov. 1978. V. 12. 86-106 p.(in Russian)
26. Anisimov M.A., Koval'chuk B.A., Rabinovich V.A., Smirnov V.A. Eksperimental'noye issledovaniye izokhornoy teployemkosti argona v shirokom diapazone parametrov sostoyaniya, vklyuchaya kriticheskuyu tochku (Experimental study of the isochoric heat capacity of argon in a wide range of state parameters, including the critical point) Teplofizicheskiye svoystva veshchestv i materialov. 1975. V. 8. 237-245 p.(in Russian)
27. Gladun C. The specific heat of liquid argon. Gryogenics. 1971. V. 11. P. 205-209.
28. Forsythe G.E., Malcolm M.A., Moler C.B. Computer Methods for Mathematical Computations (Englewood Cliffs, NJ: Prentice-Hall). 1977.
29. Tegeler C., Span R., Wagner W. A New Equation of State for Argon Covering the Fluid Region for Temperatures from the Melting Line to 700 K at Pressures up to 1000 MPa. J. Phys. Chem. Ref. Data. 1999. V. 28. P. 779-849.
30. Kolobaev V.A., Rykov S.V., Kudryavtseva I.V., Ustyuzhanin E.E., Popov P.V., Rykov V.A., Kozlov A.D. Thermodynamic properties of R1233zd(E) refrigerant: method for constructing the fundamental equation of state and tabulated data. Measurement Techniques. 2022. V. 65. P. 330-338.