1. Liu H.Z., Liu L., Hui H., Wang Q. Structural characterization and antineoplastic activity of saccharomyces cerevisiae mannoprotein. International Journal of Food Properties.2015;18:359-71. https://doi.org/10.1080/10942912.2013.819364.
2. Bzducha Wróbel A., Farkaš P., Chraniuk P., Popielarz D., Synowiec A., Pobiega K., et al. Antimicrobial and prebiotic activity of mannoproteins isolated from conventional and nonconventional yeast species – the study on selected microorganisms. World Journal of Microbiology & Biotechnology.2022;38:256. https://doi.org/10.1007/s11274-022-03448-5.
3. Yehia R.S., Saleh A.M., Bani Ismail M., Al-Quraishy S., Al-Amri O., Abdel-Gaber R. Isolation and characterization of anti-proliferative and anti-oxidative mannan from Saccharomyces cerevisiae. Journal of King Saud University.2022;34:101774. https://doi.org/10.1016/j.jksus.2021.101774.
4. Liu Y., Huang G. The derivatization and antioxidant activities of yeast mannan. International Journal of Biological Macromolecules.2018;107:755-61. https://doi.org/10.1016/j.ijbiomac.2017.09.055.
5. Chiseliţa N., Chiseliţa O., Beşliu A., Efremova N., Tofan E., Sprincean A., et al. Biochemical Composition and Antioxidant Activity of Different Preparations from Microbial Waste of the Beer Industry. Acta Universitatis Cibiniensis Series E: Food Technology. 2022;26:139-46. https://doi.org/10.2478/aucft-2022-0011.
6. Yoon B.H., Lee S.M., Chang H.-I., Ha C.H. Mannoproteins from Saccharomyces cerevisiae stimulate angiogenesis by promoting the akt-eNOS signaling pathway in endothelial cells.Biochemical and Biophysical Research Communications.2019;519:767-72. https://doi.org/10.1016/j.bbrc.2019.09.069.
7. Liu Y., Wu Q., Wu X., Algharib S.A., Gong F., Hu J., et al. Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: A review. International Journal of Biological Macromolecules. 2021;173:445-56. https://doi.org/10.1016/j.ijbiomac.2021.01.125.
8. Harbah R., Meledina T.V., Manshin D.V., Andreev V.V. Mannan: structure, biosynthesis, and methods extraction from yeast Saccharomyces cerevisiae. Journal International Academy of Refrigeration. [ВестникМеждународнойакадемиихолода].2021. No 1. P.59-65. https://doi.org/10.17586/1606-4313-2021-20-1-59-65.
9. Tang N., Wang X., Yang R., Liu Z., Liu Y., Tian J., et al. Extraction, isolation, structural characterization and prebiotic activity of cell wall polysaccharide from Kluyveromyces marxianus. Carbohydrate Polymers.2022;289:119457. https://doi.org/10.1016/j.carbpol.2022.119457.
10. Caridi A. Enological functions of parietal yeast mannoproteins. Antonie van Leeuwenhoek. International Journal of General and Molecular Microbiology. 2006;89:417-22. https://doi.org/10.1007/s10482-005-9050-x.
11. de Iseppi A., Marangon M., Vincenzi S., Lomolino G., Curioni A., Divol B. A novel approach for the valorization of wine lees as a source of compounds able to modify wine properties. LWT.2021;136:110274. https://doi.org/10.1016/j.lwt.2020.110274.
12. Seo S., Karboune S., L’Hocine L., Yaylayan V. Characterization of glycated lysozyme with galactose, galactooligosaccharides and galactan: Effect of glycation on structural and functional properties of conjugates. LWT – Food Science and Technology. 2013;53:44-53. https://doi.org/10.1016/j.lwt.2013.02.001.
13. Li J., Karboune S. Characterization of the composition and the techno-functional properties of mannoproteins from Saccharomyces cerevisiae yeast cell walls. Food Chemistry.2019;297. https://doi.org/10.1016/j.foodchem.2019.05.141.
14. Mohamed K, Megahed ME, Ali MAM. Effect of dietary supplementation of Agrimos® on growth performance, feed utilization and immunological parameters of Macrobrachium rosenbergii juveniles. Aquaculture International.2017;25:1441-52. https://doi.org/10.1007/s10499-017-0123-4.
15. Wheatcroft R. Production of β-glucan-mannan preparations by autolysis of cells under certain pH, temperature and time conditions. US6444448B1, 2002.
16. Sedmak J.J. Production of beta-glucans and mannans. US8753668B2, 2014.
17. Klis F.M, Boorsma A., de Groot P.W.J. Cell wall construction in Saccharomyces cerevisiae. Yeast 2006;23:185–202. https://doi.org/10.1002/yea.1349.
18. Liu H., Li Y., Shi A., Hu H., Sheng X., Liu L., et al. Rheological characteristics and chain conformation of mannans obtained from Saccharomyces cerevisiae. International Journal of Biological Macromolecules.2018;107:2404-11. https://doi.org/10.1016/j.ijbiomac.2017.10.126.
19. Jentoft N. Why are proteins O-glycosylated? Trends Biochem Sci 1990;15:291-4. https://doi.org/10.1016/0968-0004(90)90014-3.
20. Lehle L., Tanner W. Chapter 7 Protein Glycosylation in Yeast, 1995, p. 475-509. https://doi.org/10.1016/S0167-7306(08)60601-8.
21. Nuoffer C., Horvath A., Riezman H. Analysis of the sequence requirements for glycosylphosphatidylinositol anchoring of Saccharomyces cerevisiae Gas1 protein. Journal of Biological Chemistry.1993;268:10558–63. https://doi.org/10.1016/S0021-9258(18)82235-9.
22. Fujita M., Kinoshita T. GPI-anchor remodeling: Potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids. 2012;1821:1050-8. https://doi.org/10.1016/j.bbalip.2012.01.004.
23. Wang J., Li M., Zheng F., Niu C., Liu C., Li Q., et al. Cell wall polysaccharides: before and after autolysis of brewer’s yeast. World. J. Microbiol. Biotechnol. 2018;34. https://doi.org/10.1007/s11274-018-2508-6.
24. Sanz A., García R., Rodríguez-Peña J., Arroyo J. The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast. Journal of Fungi.2017;4:1. https://doi.org/10.3390/jof4010001.
25. Ha C. H. et al. Preparation and analysis of yeast cell wall mannoproteins, immune enhancing materials, from cell wall mutant Saccharomyces cerevisiae. Journal of Microbiology and Biotechnology.2006;16:247-55.
26. Li J., Karboune S. A comparative study for the isolation and characterization of mannoproteins from Saccharomyces cerevisiae yeast cell wall. International Journal of Biological Macromolecules.2018;119:654-61. https://doi.org/10.1016/j.ijbiomac.2018.07.102.
27. Smits G.J., van den Ende H., Klis F.M. Differential regulation of cell wall biogenesis during growth and development in yeast. vol. 147. 2001.
28. Lobsanov Y.D., Romero P.A., Sleno B., Yu B., Yip P., Herscovics A., et al. Structure of Kre2p/Mnt1p. Journal of Biological Chemistry. 2004;279:17921-31. https://doi.org/10.1074/jbc.M312720200.
29. Bony M., Barre P., Blondin B. Distribution of the flocculation protein, Flop, at the cell surface during yeast growth: The availability of Flop determines the flocculation level. Yeast.1998;14:25-35. https://doi.org/10.1002/(SICI)1097-0061(19980115)14:1<25::AID-YEA197>3.0.CO;2-C.
30. Iung A.R., Coulon J., Kiss F., Ekome J.N., Vallner J., Bonaly R. Mitochondrial Function in Cell Wall Glycoprotein Synthesis in Saccharomyces cerevisiae NCYC 625 (Wild Type) and [rho0] Mutants. Applied and Environmental Microbiology.1999;65:5398-402. https://doi.org/10.1128/AEM.65.12.5398-5402.1999.
31. Lesage G., Bussey H. Cell Wall Assembly in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews.2006;70:317-43. https://doi.org/10.1128/MMBR.00038-05.
32. Klimek-Ochab M., Brzezińska-Rodak M., Żymańczyk-Duda E., Lejczak B., Kafarski P. Comparative study of fungal cell disruption – scope and limitations of the methods. Folia Microbiol (Praha) 2011;56:469-75. https://doi.org/10.1007/s12223-011-0069-2.
33. Bzducha-Wróbel A., Błażejak S., Kawarska A., Stasiak-Różańska L., Gientka I., Majewska E. Evaluation of the Efficiency of Different Disruption Methods on Yeast Cell Wall Preparation for β-Glucan Isolation. Molecules.2014;19:20941-61. https://doi.org/10.3390/molecules191220941.
34. Liu D., Zeng X.-A., Sun D.-W., Han Z. Disruption and protein release by ultrasonication of yeast cells.Innovative Food Science & Emerging Technologies. 2013;18:132-7. https://doi.org/10.1016/j.ifset.2013.02.006.
35. Geciova J., Bury D., Jelen P. Methods for disruption of microbial cells for potential use in the dairy industry – a review. International Dairy Journal.2002;12:541-53. https://doi.org/10.1016/S0958-6946(02)00038-9.
36. Walther C., Dürauer A. Microscale disruption of microorganisms for parallelized process development. Biotechnol J.2017;12:1600579. https://doi.org/10.1002/biot.201600579.
37. Ene I.V., Walker L.A., Schiavone M., Lee K.K., Martin-Yken H., Dague E., et al. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance. MBio. 2015;6. https://doi.org/10.1128/mBio.00986-15.
38. Klimek-Ochab M., Brzezińska-Rodak M., Żymańczyk-Duda E., Lejczak B., Kafarski P. Comparative study of fungal cell disruption – scope and limitations of the methods. Folia Microbiol.(Praha) 2011;56:469-75. https://doi.org/10.1007/s12223-011-0069-2.
39. Hernawan T., Fleet G. Chemical and cytological changes during the autolysis of yeasts. Journal of Industrial Microbiology and Biotechnology.1995;14:440-50. https://doi.org/10.1007/BF01573955.
40. Kath F., Kulicke W.-M. Polymer analytical characterization of glucan and mannan from yeast Saccharomyces cerevisiae. Die Angewandte Makromolekulare Chemie.1999;268:69–80. https://doi.org/10.1002/(SICI)1522-9505(19990701)268:1<69::AID-APMC69>3.0.CO;2-D.
41. Pitarch A., Nombela C., Gil C. Cell Wall Fractionation for Yeast and Fungal Proteomics. 2008. p. 217-39. https://doi.org/10.1007/978-1-60327-210-0_19.
42. Snyman C., Nguela J.M., Sieczkowski N., Marangon M., Divol B. Optimised extraction and preliminary characterisation of mannoproteins from non-saccharomyces wine yeasts. Foods.2021;10. https://doi.org/10.3390/foods10050924.
43. Silva Araujo V.B. da, Melo A.N.F de, Costa A.G., Castro-Gomez R.H., Madruga M.S., Souza E.L. de, et al. Followed extraction of β-glucan and mannoprotein from spent brewer’s yeast (Saccharomyces uvarum) and application of the obtained mannoprotein as a stabilizer in mayonnaise. Innovative Food Science & Emerging Technologies. 2014;23:164-70. https://doi.org/10.1016/j.ifset.2013.12.013.
44. Martinez J.M., Delso C., Maza M.A., Álvarez I., Raso J. Pulsed electric fields accelerate release of mannoproteins from Saccharomyces cerevisiae during aging on the lees of Chardonnay wine. Food Research International.2019;116:795–801. https://doi.org/10.1016/j.foodres.2018.09.013.
45. Li J., Karboune S., Asehraou A. Mannoproteins from inactivated whole cells of baker’s and brewer’s yeasts as functional food ingredients: Isolation and optimization. Journal of Food Science.2020;85:1438-49. https://doi.org/10.1111/1750-3841.15054.
46. Li X., Wu J., Kang Y., Chen D., Chen G., Zeng X., et al. Yeast mannoproteins are expected to be a novel potential functional food for attenuation of obesity and modulation of gut microbiota. Front Nutr. 2022;9. https://doi.org/10.3389/fnut.2022.1019344.
47. Serba E.M., Rimareva L.V., Kurbatova E.I., Volkova G.S., Polyakov V.A., Varlamov V.P. The study of the process of enzymatic hydrolysis of yeast biomass to generate food ingredients with the specified fractional composition of protein substances. Problems of Nutrition.2017;86:76–83.